973 resultados para Electron spin resonance (ESR)


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work deals with the optical properties of supported noble metal nanoparticles, which are dominated by the so-called Mie resonance and are strongly dependent on the particles’ morphology. For this reason, characterization and control of the dimension of these systems are desired in order to optimize their applications. Gold and silver nanoparticles have been produced on dielectric supports like quartz glass, sapphire and rutile, by the technique of vapor deposition under ultra-high vacuum conditions. During the preparation, coalescence is observed as an important mechanism of cluster growth. The particles have been studied in situ by optical transmission spectroscopy and ex situ by atomic force microscopy. It is shown that the morphology of the aggregates can be regarded as oblate spheroids. A theoretical treatment of their optical properties, based on the quasistatic approximation, and its combination with results obtained by atomic force microscopy give a detailed characterization of the nanoparticles. This method has been compared with transmission electron microscopy and the results are in excellent agreement. Tailoring of the clusters’ dimensions by irradiation with nanosecond-pulsed laser light has been investigated. Selected particles are heated within the ensemble by excitation of the Mie resonance under irradiation with a tunable laser source. Laser-induced coalescence prevents strongly tailoring of the particle size. Nevertheless, control of the particle shape is possible. Laser-tailored ensembles have been tested as substrates for surface-enhanced Raman spectroscopy (SERS), leading to an improvement of the results. Moreover, they constitute reproducible, robust and tunable SERS-substrates with a high potential for specific applications, in the present case focused on environmental protection. Thereby, these SERS-substrates are ideally suited for routine measurements.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Perturbation theory in the lowest non-vanishing order in interelectron interaction has been applied to the theoretical investigation of double-ionization decays of resonantly excited single-electron states. The formulae for the transition probabilities were derived in the LS coupling scheme, and the orbital angular momentum and spin selection rules were obtained. In addition to the formulae, which are exact in this order, three approximate expressions, which correspond to illustrative model mechanisms of the transition, were derived as limiting cases of the exact ones. Numerical results were obtained for the decay of the resonantly excited Kr 1 3d^{-1}5p[^1P] state which demonstrated quite clearly the important role of the interelectron interaction in double-ionization processes. On the other hand, the results obtained show that low-energy electrons can appear in the photoelectron spectrum below the ionization threshold of the 3d shell. As a function of the photon frequency, the yield of these low-energy electrons is strongly amplified by the resonant transition of the 3d electron to 5p (or to other discrete levels), acting as an intermediate state, when the photon frequency approaches that of the transition.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The structures of 3-hydroxybenzoic acid and 4-hydroxybenzoic acid have been determined by gas-phase electron diffraction using results from quantum chemical calculations to inform the choice of restraints applied to some of the structural parameters. The results from the study presented here demonstrate that resonance hybrids are not as helpful in rationalizing the structures of 2-, 3-, and 4-hydroxybenzoic acids as are models based upon electrostatic effects.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this article we present for the first time accurate density functional theory (DFT) and time-dependent (TD) DFT data for a series of electronically unsaturated five-coordinate complexes [Mn(CO)(3)(L-2)](-), where L-2 stands for a chelating strong pi-donor ligand represented by catecholate, dithiolate, amidothiolate, reduced alpha-diimine (1,4-dialkyl-1,4-diazabutadiene (R-DAB), 2,2'-bipyridine) and reduced 2,2'-biphosphinine types. The single-crystal X-ray structure of the unusual compound [Na(BPY)][Mn(CO)(3)(BPY)]center dot Et2O and the electronic absorption spectrum of the anion [Mn(CO)(3)(BPY)](-) are new in the literature. The nature of the bidentate ligand determines the bonding in the complexes, which varies between two limiting forms: from completely pi-delocalized diamagnetic {(CO)(3)Mn-L-2}(-) for L-2 = alpha-diimine or biphosphinine, to largely valence-trapped {(CO)(3)Mn-1-L-2(2-)}(-) for L-2(2-) = catecholate, where the formal oxidation states of Mn and L-2 can be assigned. The variable degree of the pi-delocalization in the Mn(L-2) chelate ring is indicated by experimental resonance Raman spectra of [Mn(CO)(3)(L-2)](-) (L-2=3,5-di-tBu-catecholate and iPr-DAB), where accurate assignments of the diagnostically important Raman bands have been aided by vibrational analysis. The L-2 = catecholate type of complexes is known to react with Lewis bases (CO substitution, formation of six-coordinate adducts) while the strongly pi-delocalized complexes are inert. The five-coordinate complexes adopt usually a distorted square pyramidal geometry in the solid state, even though transitions to a trigonal bipyramid are also not rare. The experimental structural data and the corresponding DFT-computed values of bond lengths and angles are in a very good agreement. TD-DFT calculations of electronic absorption spectra of the studied Mn complexes and the strongly pi-delocalized reference compound [Fe(CO)(3)(Me-DAB)] have reproduced qualitatively well the experimental spectra. Analyses of the computed electronic transitions in the visible spectroscopic region show that the lowest-energy absorption band always contains a dominant (in some cases almost exclusive) contribution from a pi(HOMO) -> pi*(LUMO) transition within the MnL2 metallacycle. The character of this optical excitation depends strongly on the composition of the frontier orbitals, varying from a partial L-2 -> Mn charge transfer (LMCT) through a fully delocalized pi(MnL2) -> pi*(MnL2) situation to a mixed (CO)Mn -> L-2 charge transfer (LLCT/MLCT). The latter character is most apparent in the case of the reference complex [Fe(CO)(3)(Me-DAB)]. The higher-lying, usually strongly mixed electronic transitions in the visible absorption region originate in the three lower-lying occupied orbitals, HOMO - 1 to HOMO - 3, with significant metal-d contributions. Assignment of these optical excitations to electronic transitions of a specific type is difficult. A partial LLCT/MLCT character is encountered most frequently. The electronic absorption spectra become more complex when the chelating ligand L-2, such as 2,2'-bipyridine, features two or more closely spaced low-lying empty pi* orbitals.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A 1H NMR study of monosubstituted η-cyclopentadienyl-rhodium(I) complexes of type LLRh(C5H4X) and -iridium(I) complexes of type L2Ir(C5H4X) (L = ethene, LL = 1,3- or 1,5-diolefin; X = C(C6H5)3, CHO, or COOCH3) has been carried out. For complexes of both metals in which the neutral ligand is ethene or a non-conjugated diolefin the NMR spectra of the cyclopentadienyl protons are unusual in that H(2), H(5) resonate to high field either at room temperature or below. The corresponding NMR spectra for the cyclopentadienyl ring protons of complexes where the neutral ligand is a conjugated diene are, with one exception, normal. A single crystal X-ray structural analysis of (η4-2,4-dimethylpenta-1,4-diene)(η5-formylcyclopentadienyl)rhodium(I) (which exhibits an abnormal 1H NMR spectrum) reveals substantial localisation of electron density in the C(3)C(4) Cp ring bond (1.283(33) Å) which may be consistent with a contribution from an ‘allyl-ene’ rotamer to the ring—metal bonding scheme. An extended Hückel calculation with self consistent charge iteration was performed on this complex. The results predict a greater Mulliken overlap population for the C(3)C(4) bond in the cyclopentadienyl ring and show that the localisation is dependent on both the Cp ring substituent and the nature of the diolefin. The mass spectral fragmentation patterns of some representative diene complexes of iridium(I) and rhodium(I) are presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigate electron acceleration due to shear Alfven waves in a collissionless plasma for plasma parameters typical of 4–5RE radial distance from the Earth along auroral field lines. Recent observational work has motivated this study, which explores the plasma regime where the thermal velocity of the electrons is similar to the Alfven speed of the plasma, encouraging Landau resonance for electrons in the wave fields. We use a self-consistent kinetic simulation model to follow the evolution of the electrons as they interact with a short-duration wave pulse, which allows us to determine the parallel electric field of the shear Alfven wave due to both electron inertia and electron pressure effects. The simulation demonstrates that electrons can be accelerated to keV energies in a modest amplitude sub-second period wave. We compare the parallel electric field obtained from the simulation with those provided by fluid approximations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report observations of the cusp/cleft ionosphere made on December 16th 1998 by the EISCAT (European incoherent scatter) VHF radar at Tromso and the EISCAT Svalbard radar (ESR). We compare them with observations of the dayside auroral luminosity, as seen by meridian scanning photometers at Ny Alesund and of HF radar backscatter, as observed by the CUTLASS radar. We study the response to an interval of about one hour when the interplanetary magnetic field (IMF), monitored by the WIND and ACE spacecraft, was southward. The cusp/cleft aurora is shown to correspond to a spatially extended region of elevated electron temperatures in the VHF radar data. Initial conditions were characterised by a northward-directed IMF and cusp/cleft aurora poleward of the ESR. A strong southward turning then occurred, causing an equatorward motion of the cusp/cleft aurora. Within the equatorward expanding, southward-IMF cusp/cleft, the ESR observed structured and elevated plasma densities and ion and electron temperatures. Cleft ion fountain upflows were seen in association with elevated ion temperatures and rapid eastward convection, consistent with the magnetic curvature force on newly opened held lines for the observed negative IMF B-y. Subsequently, the ESR beam remained immediately poleward of the main cusp/cleft and a sequence of poleward-moving auroral transients passed over it. After the last of these, the ESR was in the polar cap and the radar observations were characterised by extremely low ionospheric densities and downward field-aligned flows. The IMF then turned northward again and the auroral oval contracted such that the ESR moved back into the cusp/cleft region. For the poleward-retreating northward-IMF cusp/cleft, the convection flows were slower, upflows were weaker and the electron density and temperature enhancements were less structured. Following the northward turning, the bands of high electron temperature and cusp/cleft aurora bifurcated, consistent with both subsolar and lobe reconnection taking place simultaneously. The present paper describes the large-scale behaviour of the ionosphere during this interval, as observed by a powerful combination of instruments. Two companion papers, by Lockwood et al. (2000) and Thorolfsson et al. (2000), both in this issue, describe the detailed behaviour of the poleward-moving transients observed during the interval of southward B-z, and explain their morphology in the context of previous theoretical work.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Early in 1996, the latest of the European incoherent-scatter (EISCAT) radars came into operation on the Svalbard islands. The EISCAT Svalbard Radar (ESR) has been built in order to study the ionosphere in the northern polar cap and in particular, the dayside cusp. Conditions in the upper atmosphere in the cusp region are complex, with magnetosheath plasma cascading freely into the atmosphere along open magnetic field lines as a result of magnetic reconnection at the dayside magnetopause. A model has been developed to predict the effects of pulsed reconnection and the subsequent cusp precipitation in the ionosphere. Using this model we have successfully recreated some of the major features seen in photometer and satellite data within the cusp. In this paper, the work is extended to predict the signatures of pulsed reconnection in ESR data when the radar is pointed along the magnetic field. It is expected that enhancements in both electron concentration and electron temperature will be observed. Whether these enhancements are continuous in time or occur as a series of separate events is shown to depend critically on where the open/closed field-line boundary is with respect to the radar. This is shown to be particularly true when reconnection pulses are superposed on a steady background rate.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In medical processes where ionizing radiation is used, dose planning and dose delivery are the key elements to patient safety and treatment success, particularly, when the delivered dose in a single session of treatment can be an order of magnitude higher than the regular doses of radiotherapy. Therefore, the radiation dose should be well defined and precisely delivered to the target while minimizing radiation exposure to surrounding normal tissues [1]. Several methods have been proposed to obtain three-dimensional (3-D) dose distribution [2, 3]. In this paper, we propose an alternative method, which can be easily implemented in any stereotactic radiosurgery center with a magnetic resonance imaging (MRI) facility. A phantom with or without scattering centers filled with Fricke gel solution is irradiated with Gamma Knife(A (R)) system at a chosen spot. The phantom can be a replica of a human organ such as head, breast or any other organ. It can even be constructed from a real 3-D MR image of an organ of a patient using a computer-aided construction and irradiated at a specific region corresponding to the tumor position determined by MRI. The spin-lattice relaxation time T (1) of different parts of the irradiated phantom is determined by localized spectroscopy. The T (1)-weighted phantom images are used to correlate the image pixels intensity to the absorbed dose and consequently a 3-D dose distribution with a high resolution is obtained.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The NMR spin coupling parameters, (1)J(N,H) and (2)J(H,H), and the chemical shielding, sigma((15)N), of liquid ammonia are studied from a combined and sequential QM/MM methodology. Monte Carlo simulations are performed to generate statistically uncorrelated configurations that are submitted to density functional theory calculations. Two different Lennard-Jones potentials are used in the liquid simulations. Electronic polarization is included in these two potentials via an iterative procedure with and without geometry relaxation, and the influence on the calculated properties are analyzed. B3LYP/aug-cc-pVTZ-J calculations were used to compute the V(N,H) constants in the interval of -67.8 to -63.9 Hz, depending on the theoretical model used. These can be compared with the experimental results of -61.6 Hz. For the (2)J(H,H) coupling the theoretical results vary between -10.6 to -13.01 Hz. The indirect experimental result derived from partially deuterated liquid is -11.1 Hz. Inclusion of explicit hydrogen bonded molecules gives a small but important contribution. The vapor-to-liquid shifts are also considered. This shift is calculated to be negligible for (1)J(N,H) in agreement with experiment. This is rationalized as a cancellation of the geometry relaxation and pure solvent effects. For the chemical shielding, U(15 N) Calculations at the B3LYP/aug-pcS-3 show that the vapor-to-liquid chemical shift requires the explicit use of solvent molecules. Considering only one ammonia molecule in an electrostatic embedding gives a wrong sign for the chemical shift that is corrected only with the use of explicit additional molecules. The best result calculated for the vapor to liquid chemical shift Delta sigma((15)N) is -25.2 ppm, in good agreement with the experimental value of -22.6 ppm.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The presence of certain kinds of defects at the edges of monohydrogenated zigzag graphene nanoribbons changes dramatically the charge transport properties inducing a spin-polarized conductance. Using an approach based on density functional theory and nonequilibrium Green`s function formalism to calculate the transmittance, we classify the defects in different classes depending on their distinct transport properties: (i) sigma-defects, which do not affect the transmittance close to the Fermi energy (E(F)); and (ii) pi-defects, which cause a spin polarization of the transmittance and that can be further divided into either electron or hole defects if the spin transport polarization results in larger transmittance for the up or down spin channel, respectively.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigate the spin Hall conductivity sigma (xy) (z) of a clean 2D electron gas formed in a two-subband well. We determine sigma (xy) (z) as arising from the inter-subband induced spin-orbit (SO) coupling eta (Calsaverini et al., Phys. Rev. B 78:155313, 2008) via a linear-response approach due to Rashba. By self-consistently calculating eta for realistic wells, we find that sigma (xy) (z) presents a non-monotonic (and non-universal) behavior and a sign change as the Fermi energy varies between the subband edges. Although our sigma (xy) (z) is very small (i.e., a parts per thousand(a)`` e/4 pi aEuro(3)), it is non-zero as opposed to linear-in-k SO models.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We apply the master equation technique to calculate shot noise in a system composed of single level quantum dot attached to a normal metal lead and to a ferromagnetic lead (NM-QD-FM). It is known that this system operates as a spin-diode, giving unpolarized currents for forward bias and polarized current for reverse bias. This effect is observed when only one electron can tunnel at a time through the dot, due to the strong intradot Coulomb interaction. We find that the shot noise also presents a signature of this spin-diode effect, with a super-Poissonian shot noise for forward and a sub-Poissonian shot noise for reverse bias voltages. The shot noise thus can provide further experimental evidence of the spin-rectification in the NM-QD-FM geometry.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we use Nuclear Magnetic Resonance (NMR) to write electronic states of a ferromagnetic system into high-temperature paramagnetic nuclear spins. Through the control of phase and duration of radio frequency pulses, we set the NMR density matrix populations, and apply the technique of quantum state tomography to experimentally obtain the matrix elements of the system, from which we calculate the temperature dependence of magnetization for different magnetic fields. The effects of the variation of temperature and magnetic field over the populations can be mapped in the angles of spin rotations, carried out by the RF pulses. The experimental results are compared to the Brillouin functions of ferromagnetic ordered systems in the mean field approximation for two cases: the mean field is given by (i) B = B(0) + lambda M and (ii) B = B(0) + lambda M + lambda`M(3), where B(0) is the external magnetic field, and lambda, lambda` are mean field parameters. The first case exhibits second order transition, whereas the second case has first order transition with temperature hysteresis. The NMR simulations are in good agreement with the magnetic predictions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The exchange energy of an arbitrary collinear-spin many-body system in an external magnetic field is a functional of the spin-resolved charge and current densities, E(x)[n(up arrow), n(down arrow), j(up arrow), j(down arrow)]. Within the framework of density-functional theory (DFT), we show that the dependence of this functional on the four densities can be fully reconstructed from either of two extreme limits: a fully polarized system or a completely unpolarized system. Reconstruction from the limit of an unpolarized system yields a generalization of the Oliver-Perdew spin scaling relations from spin-DFT to current-DFT. Reconstruction from the limit of a fully polarized system is used to derive the high-field form of the local-spin-density approximation to current-DFT and to magnetic-field DFT.