862 resultados para Ehrsam (J. B.) and Sons Manufacturing Company, Enterprise, Kansas.
Resumo:
The aim of the present trial was to determine the frequencies and absolute number of B and T lymphocytes subpopulations in bovine leukemia virus (BLV)-infected dairy cows with distinct lymphocyte profile known as non-leukemic (AL) and persistent lymphocytosis (PL). Thus, 15 animals were selected and divided uniformly in three groups (negative, AL, PL). The BLV infection was detected by agar gel immunodiffusion and enzyme-linked immunosorbent-assay. The lymphocytes subsets were evaluated using monoclonal antibodies by flow cytometry. The results of the present study pointed out to an increase in B lymphocytes, and also an augment in CD5(+) and CD11b(+) cells in animals showing PL. Consequently, it can be observed a decrease in the percentage of T cells subsets in these animals. Conversely, no significant alterations in the absolute number of the T lymphocytes, T CD4(+) cells and T CD8(+) lymphocytes were found in BLV-infected dairy cows with PL. Therefore, the correlation between the absolute numbers of B- and T cell subsets in the peripheral blood applied to each group showed a significant and positive strong correlation between numbers of B cells and T cells or T CD8(+) cells in the PL animals, although the same cannot be predicted for T CD4(+) lymphocytes. No such correlation was encountered for the AL and negative-control animals.
Resumo:
Steatotic livers show increased hepatic damage and impaired regeneration after partial hepatectomy (PH) under ischemia/reperfusion (I/R), which is commonly applied in clinical practice to reduce bleeding. The known function of retinol-binding protein 4 (RBP4) is to transport retinol in the circulation. We examined whether modulating RBP4 and/or retinol could protect steatotic and nonsteatotic livers in the setting of PH under I/R. Steatotic and nonsteatotic livers from Zucker rats were subjected to PH (70%) with 60 minutes of ischemia. RBP4 and retinol levels were measured and altered pharmacologically, and their effects on hepatic damage and regeneration were studied after reperfusion. Decreased RBP4 levels were observed in both liver types, whereas retinol levels were reduced only in steatotic livers. RBP4 administration exacerbated the negative consequences of liver surgery with respect to damage and liver regeneration in both liver types. RBP4 affected the mobilization of retinol from steatotic livers, and this revealed actions of RBP4 independent of simple retinol transport. The injurious effects of RBP4 were not due to changes in retinol levels. Treatment with retinol was effective only for steatotic livers. Indeed, retinol increased hepatic injury and impaired liver regeneration in nonsteatotic livers. In steatotic livers, retinol reduced damage and improved regeneration after surgery. These benefits of retinol were associated with a reduced accumulation of hepatocellular fat. Thus, strategies based on modulating RBP4 could be ineffective and possibly even harmful in both liver types in the setting of PH under I/R. In terms of clinical applications, a retinol pretreatment might open new avenues for liver surgery that specifically benefit the steatotic liver. Liver Transpl 18:1198-1208, 2012. (c) 2012 AASLD.
Resumo:
Adiponectin and interleukin 10 (IL-10) are adipokines that are predominantly secreted by differentiated adipocytes and are involved in energy homeostasis, insulin sensitivity, and the anti-inflammatory response. These two adipokines are reduced in obese subjects, which favors increased activation of nuclear factor kappa B (NF-kappa B) and leads to elevation of pro-inflammatory adipokines. However, the effects of adiponectin and IL-10 on NF-kappa B DNA binding activity (NF-kappa Bp50 and NF-kappa Bp65) and proteins involved with the toll-like receptor (TLR-2 and TLR-4) pathway, such as MYD88 and TRAF6 expression, in lipopolysaccharide-treated 3T3-L1 adipocytes are unknown. Stimulation of lipopolysaccharide-treated 3T3-L1 adipocytes for 24 h elevated IL-6 levels; activated the NF-kappa B pathway cascade; increased protein expression of IL-6R, TLR-4, MYD88, and TRAF6; and increased the nuclear activity of NF-kappa B (p50 and p65) DNA binding. Adiponectin and IL-10 inhibited the elevation of IL-6 levels and activated NF-kappa B (p50 and p65) DNA binding. Taken together, the present results provide evidence that adiponectin and IL-10 have an important role in the anti-inflammatory response in adipocytes. In addition, inhibition of NF-kappa B signaling pathways may be an excellent strategy for the treatment of inflammation in obese individuals. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Abstract Background Particulate systems are well known to be able to deliver drugs with high efficiency and fewer adverse side effects, possibly by endocytosis of the drug carriers. On the other hand, cationic compounds and assemblies exhibit a general antimicrobial action. In this work, cationic nanoparticles built from drug, cationic lipid and polyelectrolytes are shown to be excellent and active carriers of amphotericin B against C. albicans. Results Assemblies of amphotericin B and cationic lipid at extreme drug to lipid molar ratios were wrapped by polyelectrolytes forming cationic nanoparticles of high colloid stability and fungicidal activity against Candida albicans. Experimental strategy involved dynamic light scattering for particle sizing, zeta-potential analysis, colloid stability, determination of AmB aggregation state by optical spectra and determination of activity against Candida albicans in vitro from cfu countings. Conclusion Novel and effective cationic particles delivered amphotericin B to C. albicans in vitro with optimal efficiency seldom achieved from drug, cationic lipid or cationic polyelectrolyte in separate. The multiple assembly of antibiotic, cationic lipid and cationic polyelctrolyte, consecutively nanostructured in each particle produced a strategical and effective attack against the fungus cells.
Resumo:
Cocaine is a widely used drug and its abuse is associated with physical, psychiatric and social problems. Abnormalities in newborns have been demonstrated to be due to the toxic effects of cocaine during fetal development. The mechanism by which cocaine causes neurological damage is complex and involves interactions of the drug with several neurotransmitter systems, such as the increase of extracellular levels of dopamine and free radicals, and modulation of transcription factors. The aim of this review was to evaluate the importance of the dopaminergic system and the participation of inflammatory signaling in cocaine neurotoxicity. Our study showed that cocaine activates the transcription factors NF-κB and CREB, which regulate genes involved in cellular death. GBR 12909 (an inhibitor of dopamine reuptake), lidocaine (a local anesthetic), and dopamine did not activate NF-κB in the same way as cocaine. However, the attenuation of NF-κB activity after the pretreatment of the cells with SCH 23390, a D1 receptor antagonist, suggests that the activation of NF-κB by cocaine is, at least partially, due to activation of D1 receptors. NF-κB seems to have a protective role in these cells because its inhibition increased cellular death caused by cocaine. The increase in BDNF (brain-derived neurotrophic factor) mRNA can also be related to the protective role of both CREB and NF-κB transcription factors. An understanding of the mechanisms by which cocaine induces cell death in the brain will contribute to the development of new therapies for drug abusers, which can help to slow down the progress of degenerative processes.
Resumo:
Understanding the interaction of sea ice with offshore structures is of primary importance for the development of technology in cold climate regions. The rheological properties of sea ice (strength, creep, viscosity) as well as the roughness of the contact surface are the main factors influencing the type of interaction with a structure. A device was developed and designed and small scale laboratory experiments were carried out to study sea ice frictional interaction with steel material by means of a uniaxial compression rig. Sea-ice was artificially grown between a stainless steel piston (of circular cross section) and a hollow cylinder of the same material, coaxial to the former and of the same surface roughness. Three different values for the roughness were tested: 1.2, 10 and 30 μm Ry (maximum asperities height), chosen as representative values for typical surface conditions, from smooth to normally corroded steel. Creep tests (0.2, 0.3, 0.4 and 0.6 kN) were conducted at T = -10 ºC. By pushing the piston head towards the cylinder base, three different types of relative movement were observed: 1) the piston slid through the ice, 2) the piston slid through the ice and the ice slid on the surface of the outer cylinder, 3) the ice slid only on the cylinder surface. A cyclic stick-slip motion of the piston was detected with a representative frequency of 0.1 Hz. The ratio of the mean rate of axial displacement to the frequency of the stick-slip oscillations was found to be comparable to the roughness length (Sm). The roughness is the most influential parameter affecting the amplitude of the oscillations, while the load has a relevant influence on the their frequency. Guidelines for further investigations were recommended. Marco Nanetti - seloselo@virgilio.it
Resumo:
Slope failure occurs in many areas throughout the world and it becomes an important problem when it interferes with human activity, in which disasters provoke loss of life and property damage. In this research we investigate the slope failure through the centrifuge modeling, where a reduced-scale model, N times smaller than the full-scale (prototype), is used whereas the acceleration is increased by N times (compared with the gravity acceleration) to preserve the stress and the strain behavior. The aims of this research “Centrifuge modeling of sandy slopes” are in extreme synthesis: 1) test the reliability of the centrifuge modeling as a tool to investigate the behavior of a sandy slope failure; 2) understand how the failure mechanism is affected by changing the slope angle and obtain useful information for the design. In order to achieve this scope we arranged the work as follows: Chapter one: centrifuge modeling of slope failure. In this chapter we provide a general view about the context in which we are working on. Basically we explain what is a slope failure, how it happens and which are the tools available to investigate this phenomenon. Afterwards we introduce the technology used to study this topic, that is the geotechnical centrifuge. Chapter two: testing apparatus. In the first section of this chapter we describe all the procedures and facilities used to perform a test in the centrifuge. Then we explain the characteristics of the soil (Nevada sand), like the dry unit weight, water content, relative density, and its strength parameters (c,φ), which have been calculated in laboratory through the triaxial test. Chapter three: centrifuge tests. In this part of the document are presented all the results from the tests done in centrifuge. When we talk about results we refer to the acceleration at failure for each model tested and its failure surface. In our case study we tested models with the same soil and geometric characteristics but different angles. The angles tested in this research were: 60°, 75° and 90°. Chapter four: slope stability analysis. We introduce the features and the concept of the software: ReSSA (2.0). This software allows us to calculate the theoretical failure surfaces of the prototypes. Then we show in this section the comparisons between the experimental failure surfaces of the prototype, traced in the laboratory, and the one calculated by the software. Chapter five: conclusion. The conclusion of the research presents the results obtained in relation to the two main aims, mentioned above.
Resumo:
Introduction 1.1 Occurrence of polycyclic aromatic hydrocarbons (PAH) in the environment Worldwide industrial and agricultural developments have released a large number of natural and synthetic hazardous compounds into the environment due to careless waste disposal, illegal waste dumping and accidental spills. As a result, there are numerous sites in the world that require cleanup of soils and groundwater. Polycyclic aromatic hydrocarbons (PAHs) are one of the major groups of these contaminants (Da Silva et al., 2003). PAHs constitute a diverse class of organic compounds consisting of two or more aromatic rings with various structural configurations (Prabhu and Phale, 2003). Being a derivative of benzene, PAHs are thermodynamically stable. In addition, these chemicals tend to adhere to particle surfaces, such as soils, because of their low water solubility and strong hydrophobicity, and this results in greater persistence under natural conditions. This persistence coupled with their potential carcinogenicity makes PAHs problematic environmental contaminants (Cerniglia, 1992; Sutherland, 1992). PAHs are widely found in high concentrations at many industrial sites, particularly those associated with petroleum, gas production and wood preserving industries (Wilson and Jones, 1993). 1.2 Remediation technologies Conventional techniques used for the remediation of soil polluted with organic contaminants include excavation of the contaminated soil and disposal to a landfill or capping - containment - of the contaminated areas of a site. These methods have some drawbacks. The first method simply moves the contamination elsewhere and may create significant risks in the excavation, handling and transport of hazardous material. Additionally, it is very difficult and increasingly expensive to find new landfill sites for the final disposal of the material. The cap and containment method is only an interim solution since the contamination remains on site, requiring monitoring and maintenance of the isolation barriers long into the future, with all the associated costs and potential liability. A better approach than these traditional methods is to completely destroy the pollutants, if possible, or transform them into harmless substances. Some technologies that have been used are high-temperature incineration and various types of chemical decomposition (for example, base-catalyzed dechlorination, UV oxidation). However, these methods have significant disadvantages, principally their technological complexity, high cost , and the lack of public acceptance. Bioremediation, on the contrast, is a promising option for the complete removal and destruction of contaminants. 1.3 Bioremediation of PAH contaminated soil & groundwater Bioremediation is the use of living organisms, primarily microorganisms, to degrade or detoxify hazardous wastes into harmless substances such as carbon dioxide, water and cell biomass Most PAHs are biodegradable unter natural conditions (Da Silva et al., 2003; Meysami and Baheri, 2003) and bioremediation for cleanup of PAH wastes has been extensively studied at both laboratory and commercial levels- It has been implemented at a number of contaminated sites, including the cleanup of the Exxon Valdez oil spill in Prince William Sound, Alaska in 1989, the Mega Borg spill off the Texas coast in 1990 and the Burgan Oil Field, Kuwait in 1994 (Purwaningsih, 2002). Different strategies for PAH bioremediation, such as in situ , ex situ or on site bioremediation were developed in recent years. In situ bioremediation is a technique that is applied to soil and groundwater at the site without removing the contaminated soil or groundwater, based on the provision of optimum conditions for microbiological contaminant breakdown.. Ex situ bioremediation of PAHs, on the other hand, is a technique applied to soil and groundwater which has been removed from the site via excavation (soil) or pumping (water). Hazardous contaminants are converted in controlled bioreactors into harmless compounds in an efficient manner. 1.4 Bioavailability of PAH in the subsurface Frequently, PAH contamination in the environment is occurs as contaminants that are sorbed onto soilparticles rather than in phase (NAPL, non aqueous phase liquids). It is known that the biodegradation rate of most PAHs sorbed onto soil is far lower than rates measured in solution cultures of microorganisms with pure solid pollutants (Alexander and Scow, 1989; Hamaker, 1972). It is generally believed that only that fraction of PAHs dissolved in the solution can be metabolized by microorganisms in soil. The amount of contaminant that can be readily taken up and degraded by microorganisms is defined as bioavailability (Bosma et al., 1997; Maier, 2000). Two phenomena have been suggested to cause the low bioavailability of PAHs in soil (Danielsson, 2000). The first one is strong adsorption of the contaminants to the soil constituents which then leads to very slow release rates of contaminants to the aqueous phase. Sorption is often well correlated with soil organic matter content (Means, 1980) and significantly reduces biodegradation (Manilal and Alexander, 1991). The second phenomenon is slow mass transfer of pollutants, such as pore diffusion in the soil aggregates or diffusion in the organic matter in the soil. The complex set of these physical, chemical and biological processes is schematically illustrated in Figure 1. As shown in Figure 1, biodegradation processes are taking place in the soil solution while diffusion processes occur in the narrow pores in and between soil aggregates (Danielsson, 2000). Seemingly contradictory studies can be found in the literature that indicate the rate and final extent of metabolism may be either lower or higher for sorbed PAHs by soil than those for pure PAHs (Van Loosdrecht et al., 1990). These contrasting results demonstrate that the bioavailability of organic contaminants sorbed onto soil is far from being well understood. Besides bioavailability, there are several other factors influencing the rate and extent of biodegradation of PAHs in soil including microbial population characteristics, physical and chemical properties of PAHs and environmental factors (temperature, moisture, pH, degree of contamination). Figure 1: Schematic diagram showing possible rate-limiting processes during bioremediation of hydrophobic organic contaminants in a contaminated soil-water system (not to scale) (Danielsson, 2000). 1.5 Increasing the bioavailability of PAH in soil Attempts to improve the biodegradation of PAHs in soil by increasing their bioavailability include the use of surfactants , solvents or solubility enhancers.. However, introduction of synthetic surfactant may result in the addition of one more pollutant. (Wang and Brusseau, 1993).A study conducted by Mulder et al. showed that the introduction of hydropropyl-ß-cyclodextrin (HPCD), a well-known PAH solubility enhancer, significantly increased the solubilization of PAHs although it did not improve the biodegradation rate of PAHs (Mulder et al., 1998), indicating that further research is required in order to develop a feasible and efficient remediation method. Enhancing the extent of PAHs mass transfer from the soil phase to the liquid might prove an efficient and environmentally low-risk alternative way of addressing the problem of slow PAH biodegradation in soil.
Resumo:
The production rate of $b$ and $\bar{b}$ hadrons in $pp$ collisions are not expected to be strictly identical, due to imbalance between quarks and anti-quarks in the initial state. This phenomenon can be naively related to the fact that the $\bar{b}$ quark produced in the hard scattering might combine with a $u$ or $d$ valence quark from the colliding protons, whereas the same cannot happen for a $b$ quark. This thesis presents the analysis performed to determine the production asymmetries of $B^0$ and $B^0_s$. The analysis relies on data samples collected by the LHCb detector at the Large Hadron Collider (LHC) during the 2011 and 2012 data takings at two different values of the centre of mass energy $\sqrt{s}=7$ TeV and at $\sqrt{s}=8$ TeV, corresponding respectively to an integrated luminosity of 1 fb$^{-1}$ and of 2 fb$^{-1}$. The production asymmetry is one of the key ingredients to perform measurements of $CP$ violation in b-hadron decays at the LHC, since $CP$ asymmetries must be disentangled from other sources. The measurements of the production asymmetries are performed in bins of $p_\mathrm{T}$ and $\eta$ of the $B$-meson. The values of the production asymmetries, integrated in the ranges $4 < p_\mathrm{T} < 30$ GeV/c and $2.5<\eta<4.5$, are determined to be: \begin{equation} A_\mathrm{P}(\B^0)= (-1.00\pm0.48\pm0.29)\%,\nonumber \end{equation} \begin{equation} A_\mathrm{P}(\B^0_s)= (\phantom{-}1.09\pm2.61\pm0.61)\%,\nonumber \end{equation} where the first uncertainty is statistical and the second is systematic. The measurement of $A_\mathrm{P}(B^0)$ is performed using the full statistics collected by LHCb so far, corresponding to an integrated luminosity of 3 fb$^{-1}$, while the measurement of $A_\mathrm{P}(B^0_s)$ is realized with the first 1 fb$^{-1}$, leaving room for improvement. No clear evidence of dependences on the values of $p_\mathrm{T}$ and $\eta$ is observed. The results presented in this thesis are the most precise measurements available up to date.
Resumo:
Granzyme B and perforin messenger RNA (mRNA) expression has been shown to be a specific in vivo activation marker for cytotoxic cells. The aim of this study was to assess the contribution of cell-mediated cytotoxicity in the pathogenesis of lichen sclerosus. In situ hybridization and immunohistochemistry were performed on serial tissue sections of lesional skin biopsies and normal skin as control. Immunohistochemical staining showed that the cellular infiltrate of diseased skin consisted predominantly of T cells (CD3+) and some B cells (CD20+). Among T cells CD4+ and CD8+ cells were found in about equal numbers. In normal skin samples perforin and granzyme B mRNA expressing cells were only rarely found. In contrast, in biopsies from diseased skin a high percentage of infiltrating cells expressed mRNA for perforin and granzyme B. The perforin and granzyme B expressing cells were found in the dermal infiltrate and intraepidermally in close proximity to keratinocytes suggesting in situ activation of these cells. These findings provide evidence that cell-mediated cytotoxicity plays a significant role in tissue destruction in lichen sclerosus.
Resumo:
Survival and death of lymphocytes are regulated by the balance between pro- and antiapoptotic members of the Bcl-2 family; this is coordinated with the control of cell cycling and differentiation. Bim, a proapoptotic BH3-only member of the Bcl-2 family, can be regulated by MEK/ERK-mediated phosphorylation, which affects its binding to pro-survival Bcl-2 family members and its turnover. We investigated Bim modifications in mouse B and T lymphoid cells after exposure to apoptotic stimuli and during mitogenic activation. Treatment with ionomycin or cytokine withdrawal caused an elevation in Bim(EL), the most abundant Bim isoform. In contrast, in mitogenically stimulated T and B cells, Bim(EL) was rapidly phosphorylated, and its levels declined. Pharmacological inhibitors of MEK/ERK signaling prevented both of these changes in Bim, reduced proliferation, and triggered apoptosis of mitogen-stimulated T and B cells. Loss of Bim prevented this cell killing but did not restore cell cycling. These results show that during mitogenic stimulation of T and B lymphocytes MEK/ERK signaling is critical for two distinct processes, cell survival, mediated (at least in part) through phosphorylation and consequent inhibition of Bim, and cell cycling, which proceeds independently of Bim inactivation.
Resumo:
AMR-Me, a C-28 methylester derivative of triterpenoid compound Amooranin isolated from Amoora rohituka stem bark and the plant has been reported to possess multitude of medicinal properties. Our previous studies have shown that AMR-Me can induce apoptosis through mitochondrial apoptotic and MAPK signaling pathways by regulating the expression of apoptosis related genes in human breast cancer MCF-7 cells. However, the molecular mechanism of AMR-Me induced apoptotic cell death remains unclear. Our results showed that AMR-Me dose-dependently inhibited the proliferation of MCF-7 and MDA-MB-231 cells under serum-free conditions supplemented with 1 nM estrogen (E2) with an IC50 value of 0.15 µM, 0.45 µM, respectively. AMR-Me had minimal effects on human normal breast epithelial MCF-10A + ras and MCF-10A cells with IC50 value of 6 and 6.5 µM, respectively. AMR-Me downregulated PI3K p85, Akt1, and p-Akt in an ERα-independent manner in MCF-7 cells and no change in expression levels of PI3K p85 and Akt were observed in MDA-MB-231 cells treated under similar conditions. The PI3K inhibitor LY294002 suppressed Akt activation similar to AMR-Me and potentiated AMR-Me induced apoptosis in MCF-7 cells. EMSA revealed that AMR-Me inhibited nuclear factor-kappaB (NF-κB) DNA binding activity in MDA-MB-231 cells in a time-dependent manner and abrogated EGF induced NF-κB activation. From these studies we conclude that AMR-Me decreased ERα expression and effectively inhibited Akt phosphorylation in MCF-7 cells and inactivate constitutive nuclear NF-κB and its regulated proteins in MDA-MB-231 cells. Due to this multifactorial effect in hormone-dependent and independent breast cancer cells AMR-Me deserves attention for use in breast cancer prevention and therapy
Resumo:
Acute psychosocial stress stimulates transient increases in circulating pro-inflammatory plasma cytokines, but little is known about stress effects on anti-inflammatory cytokines or underlying mechanisms. We investigated the stress kinetics and interrelations of pro- and anti-inflammatory measures on the transcriptional and protein level. Forty-five healthy men were randomly assigned to either a stress or control group. While the stress group underwent an acute psychosocial stress task, the second group participated in a non-stress control condition. We repeatedly measured before and up to 120min after stress DNA binding activity of the pro-inflammatory transcription factor NF-κB (NF-κB-BA) in peripheral blood mononuclear cells, whole-blood mRNA levels of NF-κB, its inhibitor IκB, and of the pro-inflammatory cytokines interleukin (IL)-1ß and IL-6, and the anti-inflammatory cytokine IL-10. We also repeatedly measured plasma levels of IL-1ß, IL-6, and IL-10. Compared to non-stress, acute stress induced significant and rapid increases in NF-κB-BA and delayed increases in plasma IL-6 and mRNA of IL-1ß, IL-6, and IκB (p's<.045). In the stress group, significant increases over time were also observed for NF-κB mRNA and plasma IL-1ß and IL-10 (p's<.055). NF-κB-BA correlated significantly with mRNA of IL-1β (r=.52, p=.002), NF-κB (r=.48, p=.004), and IκB (r=.42, p=.013), and marginally with IL-6 mRNA (r=.31, p=.11). Plasma cytokines did not relate to NF-κB-BA or mRNA levels of the respective cytokines. Our data suggest that stress induces increases in NF-κB-BA that relate to subsequent mRNA expression of pro-inflammatory, but not anti-inflammatory cytokines, and of regulatory-cytoplasmic-proteins. The stress-induced increases in plasma cytokines do not seem to derive from de novo synthesis in circulating blood cells.
Resumo:
BACKGROUND Recent technical development allows the digital manufacturing of monolithic reconstructions with high-performance materials. For implant-supported crowns, the fixation requires an abutment design onto which the reconstruction can be bonded. PURPOSE The aim of this laboratory investigation was to analyze stiffness, strength, and failure modes of implant-supported, computer-assisted design and computer-aided manufacturing (CAD/CAM)-generated resin nano ceramic (RNC) crowns bonded to three different titanium abutments. MATERIALS AND METHODS Eighteen monolithic RNC crowns were produced and loaded in a universal testing machine under quasi-static condition according to DIN ISO 14801. With regard to the type of titanium abutment, three groups were defined: (1) prefabricated cementable standard; (2) CAD/CAM-constructed individualized; and (3) novel prefabricated bonding base. Stiffness and strength were measured and analyzed statistically with Wilcoxon rank sum test. Sections of the specimens were examined microscopically. RESULTS Stiffness demonstrated high stability for all specimens loaded in the physiological loading range with means and standard deviations of 1,579 ± 120 N/mm (group A), 1,733 ± 89 N/mm (group B), and 1,704 ± 162 N/mm (group C). Mean strength of the novel prefabricated bonding base (group C) was 17% lower than of the two other groups. Plastic deformations were detectable for all implant-abutment crown connections. CONCLUSIONS Monolithic implant crowns made of RNC seem to represent a feasible and stable prosthetic construction under laboratory testing conditions with strength higher than the average occlusal force, independent of the different abutment designs used in this investigation.
Resumo:
B-lymphocyte stimulator (BLyS also called BAFF), is a potent cell survival factor expressed in many hematopoietic cells. BLyS levels are elevated in the serum of non-Hodgkin lymphoma (NHL) patients, and have been reported to be associated with disease progression, and prognosis. To understand the mechanisms involved in BLyS gene expression and regulation, we examined expression, function, and regulation of the BLyS gene in B cell non-Hodgkin's lymphoma (NHL-B) cells. BLyS is constitutively expressed in aggressive NHL-B cells including large B cell lymphoma (LBCL) and mantle cell lymphoma (MCL) contributing to survival and proliferation of malignant B cells. Two important transcription factors, NF-κB and NFAT, were found to be involved in regulating BLyS expression through at least one NF-κB and two NFAT binding sites in the BLyS promoter. Further study indicates that the constitutive activation of NF-κB and BLyS in NHL-B cells forms a positive feedback loop contributing to cell survival and proliferation. In order to further investigate BLyS signaling pathway, we studied the function of BAFF-R, a major BLyS receptor, on B cells survival and proliferation. Initial study revealed that BAFF-R was also found in the nucleus, in addition to its presence on plasma membrane of B cells. Nuclear presentation of BAFF-R can be increased by anti-IgM and soluble BLyS treatment in normal peripheral B lymphocytes. Inhibition of BLyS expression decreases nuclear BAFF-R level in LBCL cells. Furthermore, we showed that BAFF-R translocated to nucleus through the classic karyopherin pathway. A candidate nuclear localization sequence (NLS) was identified in the BAFF-R protein sequence and mutation of this putative NLS can block BAFF-R entering nucleus and LBCL cell proliferation. Further study showed that BAFF-R co-localized with NF-κB family member, c-rel in the nucleus. We also found BAFF-R mediated transcriptional activity, which could be increased by c-rel. We also found that nuclear BAFF-R could bind to the NF-κB binding site on the promoters of NF-κB target genes such as BLyS, CD154, Bcl-xL, Bfl-1/A1 and IL-8. These findings indicate that BAFF-R may also promote survival and proliferation of normal B cells and NHL-B cells by directly functioning as a transcriptional co-factor with NF-κB family member. ^