991 resultados para Doherty, Kenneth
Resumo:
Developments in evaporator cleaning have accelerated in the past 10 years as a result of an extended period of research into scale formation and scale composition. Chemical cleaning still provides the most cost effective method of cleaning the evaporators. The paper describes a system that was designed to obtain on-line samples of evaporator scale negating the need to open up hot evaporator vessels for scale collection. This system was successfully implemented in a number of evaporators at a sugar mill. This paper also describes a recent experience in a sugar factory in which the cleaning procedure was slightly modified, resulting in effective removal of intractable scale.
Resumo:
Developments in evaporator cleaning have accelerated in the past 10 years as a result of an extended period of research into scale formation and scale composition. Chemical cleaning still provides the most cost effective method of cleaning the evaporators. The paper describes a system that was designed to obtain on-line samples of evaporator scale negating the need to open up hot evaporator vessels for scale collection. This system was successfully implemented in a number of evaporators at a sugar mill. This paper also describes a recent experience in a sugar factory in which the cleaning procedure was slightly modified resulting in effective removal of intractable scale.
Resumo:
Sugarcane products represent an abundant and relatively low cost carbon resource that can be utilised to produce chemical intermediates such as levulinic acid and furanics. These chemicals can be easily upgraded to commodity and specialty chemicals and biofuels by high yielding and well established technologies. However, there are challenges and technical hurdles that need to be overcome before these chemical intermediates can be cost-effectively produced in commercial quantities. The paper reviews production of levulinic acid and furanics from sugars by homogeneous mineral acid catalysts, and reports on preliminary studies on the production of these compounds with environmentally friendly biodegradable sulfonic acids. The yields (>50% of theoretical) of levulinic acid, formic acid and furfural obtained with these organic acids are comparable to that of sulphuric acid currently used for their production.
Resumo:
Sugarcane biorefineries co-producing fuels, green chemicals and bio-products offer great potential for improving the profitability and sustainability of sugarcane industries around the world. Sugarcane bagasse is widely regarded as one of the best biomass feedstocks for early adoption and commercialisation of biorefining technologies because of the large scale of the resource and its availability at sugar factories. Biomass biorefineries aim to convert bagasse through biochemical and thermochemical processes to produce low cost fermentable sugars which are a platform for value-adding. Through subsequent fermentation technologies or chemical synthesis, the sugars can be converted to fuels including ethanol and butanol, oils, organic acids such as succinic and levulinic and polymer precursors. Other biorefinery products can include food and animal feeds, plastics, fibre products and resins. Recent advances in biorefinery production technologies are being demonstrated in a unique research facility at the Queensland University of Technology’s Mackay Renewable Biocommodities Pilot Plant in Mackay, Australia. This pilot scale production facility located at Mackay Sugar Ltd’s Racecourse Mill is demonstrating the production of a range of fuels and other products from sugarcane bagasse. This paper will address the opportunities available for sugarcane biorefineries to contribute to future profitability and sustainability of the sugarcane industry.
Resumo:
There is an increasing need for biodegradable, environmentally friendly plastics to replace the petroleum-based non-degradable plastics which litter and pollute the environment. Starch-based plastic film composites are becoming a popular alternative because of their low cost, biodegradability, the abundance of starch, and ease with which starch-based films can be chemically modified. This paper reports on the results of using sugar cane bagasse nanofibres to improve the physicochemical properties of starch-based polymers. The addition of bagasse nanofibre (2.5, 5, 10 or 20 wt%) to (modified) potato starch (‘Soluble starch’) reduced the moisture uptake by up to 17 % at 58 % relative humidity (RH). The film’s tensile strength and Young’s Modulus increased by up to 100 % and 200 % with 10 wt% and 20 wt% nanofibre respectively at 58% RH. The tensile strain reduced by up to 70 % at 20 wt% fibre loading. These results indicate that addition of sugar cane bagasse nanofibres significantly improved the properties of starch-based plastic films
Resumo:
This paper reports on the results of using unbleached sugar cane bagasse nanofibres (average diameter 26.5 nm; aspect ratio 247 assuming a dry fibre density of 1,500 kg/m3) to improve the physico-chemical properties of starch-based films. The addition of bagasse nanofibres (2.5 to 20 wt%) to modified potato starch (i.e. soluble starch) reduced the moisture uptake by up to 17 % at 58 % relative humidity. The film’s tensile strength and Young’s modulus increased by up to 100 % (3.1 to 6.2 MPa) and 300 % (66.3 to 198.3 MPa) respectively with 10 and 20 wt% fibre addition. However, the strain at yield dropped by 50 % for the film containing 10 wt% fibre. Models for composite materials were used to account for the strong interactions between the nanofibres and the starch matrix. The storage and loss moduli as well as the glass transition temperature (Tg) obtained from dynamic mechanical thermal analysis, were increased with the starch-nanofibre films indicating decreased starch chain mobility due to the interacting effect of the nanofibres. Evidence of the existence of strong interactions between the starch matrix and the nanofibres was revealed from detailed Fourier transform infra-red and scanning electron microscopic evaluation.
Resumo:
The effect of adipose tissue on inductive adipogenesis within Matrigel (BD Biosciences) was assessed by using a murine chamber model containing a vascular pedicle. Three-chamber configurations that varied in the access to an adipose tissue source were used, including sealed- and open-chamber groups that had no access and limited access, respectively, to the surrounding adipose tissue, and a sealed-chamber group in which adipose tissue was placed as an autograft. All groups showed neovascularization, but varied in the amount of adipogenesis seen in direct relation to their access to preexisting adipose tissue: open chambers showed strong adipogenesis, whereas the sealed chambers had little or no adipose tissue; adipogenesis was restored in the autograft chamber group that contained 2- to 5-mg fat autografts. These showed significantly more adipogenesis than the sealed chambers with no autograft (p < 0.01). Autografts with 1 mg of fat were capable of producing adipogenesis but did so less consistently than the larger autografts. These findings have important implications for adipose tissue engineering strategies and for understanding de novo production of adipose tissue.
Resumo:
An in vivo murine vascularized chamber model has been shown to generate spontaneous angiogenesis and new tissue formation. This experiment aimed to assess the effects of common biological scaffolds on tissue growth in this model. Either laminin-1, type I collagen, fibrin glue, hyaluronan, or sea sponge was inserted into silicone chambers containing the epigastric artery and vein, one end was sealed with adipose tissue and the other with bone wax, then incubated subcutaneously. After 2, 4, or 6 weeks, tissue from chambers containing collagen I, fibrin glue, hyaluronan, or no added scaffold (control) had small amounts of vascularized connective tissue. Chambers containing sea sponge had moderate connective tissue growth together with a mild "foreign body" inflammatory response. Chambers containing laminin-1, at a concentration 10-fold lower than its concentration in Matrigel™, resulted in a moderate adipogenic response. In summary, (1) biological hydrogels are resorbed and gradually replaced by vascularized connective tissue; (2) sponge-like matrices with large pores support connective tissue growth within the pores and become encapsulated with granulation tissue; (3) laminin-containing scaffolds facilitate adipogenesis. It is concluded that the nature and chemical composition of the scaffold exerts a significant influence on the amount and type of tissue generated in this in vivo chamber model.
Resumo:
BACKGROUND Androgen-dependent prostate cancer (PrCa) xenograft models are required to study PrCa biology in the clinically relevant in vivo environment. METHODS Human PrCa tissue from a femoral bone metastasis biopsy (BM18) was grown and passaged subcutaneously through male severe combined immune-deficient (SCID) mice. Human mitochondria (hMt), prostate specific antigen (PSA), androgen receptor (AR), cytokeratin-18 (CK-18), pan-cytokeratin, and high molecular weight-cytokeratin (HMW-CK) were assessed using immunohistochemistry (IHC). Surgical castration was performed to examine androgen dependence. Serum was collected pre- and post-castration for monitoring of PSA levels. RESULTS: BM18 stained positively for hMt, PSA, AR, CK-18, pan keratin, and negatively for HMW-CK, consistent with the staining observed in the original patient material. Androgen-deprivation induced tumor regression in 10/10 castrated male SCID mice. Serum PSA levels positively correlated with BM18 tumor size. CONCLUSIONS BM18 expresses PSA and AR, and rapidly regresses in response to androgen withdrawal. This provides a new clinically significant PrCa model for the study of androgen-dependent growth.
Resumo:
In families, decisions about parents’ and children’s education and career require an ongoing negotiation to reconcile the goals of all family members. This paper describes a project which investigates these decisions within families experiencing whole family relocation based on one adult’s work. Semi-structured interviews were conducted with professional workers with school-aged children living in six Australian rural and remote communities. The interview sample included four doctors, 10 teachers, four nurses and nine police. This qualitative phase informed the development of an online survey of a larger sample (n¼278) of the same professional groups, which constituted a second quantitative phase of the research. This paper reports on only one aspect of the survey, that is, the participants’ recording of two previous career location moves they had undertaken and the reasons for these. The data emphasise the family project evident in this decision-making process as the respondents deal with a large range of complex individual, family and broader systems’ influences in reconciling their own careers and their children’s educational opportunities.
Resumo:
In a standard overlapping generations growth model, with a fixed amount of land and endogenous fertility, the competitive economy converges to a steady state with a zero population growth rate and positive consumption per capita. The Malthusian hypothesis is interpreted as a positive statement about the relationship between population growth and consumption per-capita, when production exhibits diminishing returns to labor and there is a fixed amount of land essential for production. Even when individuals care only about the number of their children and not about their children's welfare, the equilibrium is such that they eventually would choose to have only one child for each adult. Hence, if Malthus's "positive check' on population is the result of the response of optimizing agents to competitively determined prices, Malthus's pessimistic conjecture is not necessarily true, even though his other assumptions hold. -from Authors
Resumo:
The repair of DNA double-strand breaks (DSBs) is a critical cellular mechanism that exists to ensure genomic stability. DNA DSBs are the most deleterious type of insult to a cell’s genetic material and can lead to genomic instability, apoptosis, or senescence. Incorrectly repaired DNA DSBs have the potential to produce chromosomal translocations and genomic instability, potentially leading to cancer. The prevalence of DNA DSBs in cancer due to unregulated growth and errors in repair opens up a potential therapeutic window in the treatment of cancers. The cellular response to DNA DSBs is comprised of two pathways to ensure DNA breaks are repaired: homologous recombination and non-homologous end joining. Identifying chemotherapeutic compounds targeting proteins involved in these DNA repair pathways has shown promise as a cancer therapy for patients, either as a monotherapy or in combination with genotoxic drugs. From the beginning, there have been a number of chemotherapeutic compounds that have yielded successful responses in the clinic, a number that have failed (CGK-733 and iniparib), and a number of promising targets for future studies identified. This review looks in detail at how the cell responds to these DNA DSBs and investigates the chemotherapeutic avenues that have been and are currently being explored to target this repair process.
Resumo:
The role of emotion during learning encounters in science teacher education is under-researched and under-theorized. In this case study we explore the emotional climates, that is, the collective states of emotional arousal, of a preservice secondary science education class to illuminate practice for producing and reproducing high quality learning experiences for preservice science teachers. Theories related to the sociology of emotions informed our analyses from data sources such as preservice teachers’ perceptions of the emotional climate of their class, emotional facial expressions, classroom conversations, and cogenerative dialogue. The major outcome from our analyses was that even though preservice teachers reported high positive emotional climate during the professor’s science demonstrations, they also valued the professor’s in the moment reflections on her teaching that were associated with low emotional climate ratings. We co-relate emotional climate data and preservice teachers’ comments during cogenerative dialogue to expand our understanding of high quality experiences and emotional climate in science teacher education. Our study also contributes refinements to research perspectives on emotional climate.