922 resultados para Diameter of Graph
Resumo:
Novel anti-neoplastic agents such as gene targeting vectors and encapsulated carriers are quite large (approximately 100–300 nm in diameter). An understanding of the functional size and physiological regulation of transvascular pathways is necessary to optimize delivery of these agents. Here we analyze the functional limits of transvascular transport and its modulation by the microenvironment. One human and five murine tumors including mammary and colorectal carcinomas, hepatoma, glioma, and sarcoma were implanted in the dorsal skin-fold chamber or cranial window, and the pore cutoff size, a functional measure of transvascular gap size, was determined. The microenvironment was modulated: (i) spatially, by growing tumors in subcutaneous or cranial locations and (ii) temporally, by inducing vascular regression in hormone-dependent tumors. Tumors grown subcutaneously exhibited a characteristic pore cutoff size ranging from 200 nm to 1.2 μm. This pore cutoff size was reduced in tumors grown in the cranium or in regressing tumors after hormone withdrawal. Vessels induced in basic fibroblast growth factor-containing gels had a pore cutoff size of 200 nm. Albumin permeability was independent of pore cutoff size. These results have three major implications for the delivery of therapeutic agents: (i) delivery may be less efficient in cranial tumors than in subcutaneous tumors, (ii) delivery may be reduced during tumor regression induced by hormonal ablation, and (iii) permeability to a molecule is independent of pore cutoff size as long as the diameter of the molecule is much less than the pore diameter.
Resumo:
Understanding the mechanism for sucrose-induced protein stabilization is important in many diverse fields, ranging from biochemistry and environmental physiology to pharmaceutical science. Timasheff and Lee [Lee, J. C. & Timasheff, S. N. (1981) J. Biol. Chem. 256, 7193–7201] have established that thermodynamic stabilization of proteins by sucrose is due to preferential exclusion of the sugar from the protein’s surface, which increases protein chemical potential. The current study measures the preferential exclusion of 1 M sucrose from a protein drug, recombinant interleukin 1 receptor antagonist (rhIL-1ra). It is proposed that the degree of preferential exclusion and increase in chemical potential are directly proportional to the protein surface area and that, hence, the system will favor the protein state with the smallest surface area. This mechanism explains the observed sucrose-induced restriction of rhIL-1ra conformational fluctuations, which were studied by hydrogen–deuterium exchange and cysteine reactivity measurements. Furthermore, infrared spectroscopy of rhlL-1ra suggested that a more ordered native conformation is induced by sucrose. Electron paramagnetic resonance spectroscopy demonstrated that in the presence of sucrose, spin-labeled cysteine 116 becomes more buried in the protein’s interior and that the hydrodynamic diameter of the protein is reduced. The preferential exclusion of sucrose from the protein and the resulting shift in the equilibrium between protein states toward the most compact conformation account for sucrose-induced effects on rhIL-1ra.
Resumo:
Most mitochondrial proteins are imported into mitochondria through transmembrane channels composed largely, and perhaps exclusively, of proteins. We have determined the effective internal diameter of the protein import channel in the mitochondrial outer membrane to be between 20 Å and 26 Å during translocation. The diameter of the import channel in the inner membrane is smaller than the diameter of the outer membrane import channel. These results were obtained by measuring the effect of rigid steric bulk introduced into precursor proteins on import.
Resumo:
Hepatic endothelial fenestrae are dynamic structures that act as a sieving barrier to control the extensive exchange of material between the blood and the liver parenchyma. Alterations in the number or diameter of fenestrae by drugs, hormones, toxins, and diseases can produce serious perturbations in liver function. Previous studies have shown that disassembly of actin by cytochalasin B or latrunculin A caused a remarkable increase in the number of fenestrae and established the importance of the actin cytoskeleton in the numerical dynamics of fenestrae. So far, however, no mechanism or structure has been described to explain the increase in the number of fenestrae. Using the new actin inhibitor misakinolide, we observed a new structure that appears to serve as a fenestrae-forming center in hepatic endothelial cells.
Resumo:
Solid-state nuclear magnetic resonance relaxation experiments were used to study the rigidity and spatial proximity of polymers in sugar beet (Beta vulgaris) cell walls. Proton T1ρ decay and cross-polarization patterns were consistent with the presence of rigid, crystalline cellulose microfibrils with a diameter of approximately 3 nm, mobile pectic galacturonans, and highly mobile arabinans. A direct-polarization, magic-angle-spinning spectrum recorded under conditions adapted to mobile polymers showed only the arabinans, which had a conformation similar to that of beet arabinans in solution. These cell walls contained very small amounts of hemicellulosic polymers such as xyloglucan, xylan, and mannan, and no arabinan or galacturonan fraction closely associated with cellulose microfibrils, as would be expected of hemicelluloses. Cellulose microfibrils in the beet cell walls were stable in the absence of any polysaccharide coating.
Resumo:
Potato virus X (PVX) is a filamentous plant virus infecting many members of the family Solanaceae. A modified form of PVX, PVX.GFP-CP which expressed a chimeric gene encoding a fusion between the 27-kDa Aequorea victoria green fluorescent protein and the amino terminus of the 25-kDa PVX coat protein, assembled into virions and moved both locally and systemically. The PVX.GFP-CP virions were over twice the diameter of wild-type PVX virions. Assembly of PVX.GFP-CP virions required the presence of free coat protein subunits in addition to the fusion protein subunits. PVX.GFP-CP virions accumulated as paracrystalline arrays in infected cells similar to those seen in cells infected with wild-type PVX The formation of virions carrying large superficial fusions illustrates a novel approach for production of high levels of foreign proteins in plants. Aggregates of PVX.GFP-CP particles were fluorescent, emitting green light when excited with ultraviolet light and could be imaged using confocal laser scanning microscopy. The detection of virus particles in infected tissue demonstrates the potential of fusions between the green fluorescent protein and virus coat protein for the non-invasive study of virus multiplication and spread.
Resumo:
Pt–Pd bimetallic nanoparticles supported on graphene oxide (GO) nanosheets were prepared by a sonochemical reduction method in the presence of polyethylene glycol as a stabilizing agent. The synthetic method allowed for a fine tuning of the particle composition without significant changes in their size and degree of aggregation. Detailed characterization of GO-supported Pt–Pd catalysts was carried out by transmission electron microscopy (TEM), AFM, XPS, and electrochemical techniques. Uniform deposition of Pt–Pd nanoparticles with an average diameter of 3 nm was achieved on graphene nanosheets using a novel dual-frequency sonication approach. GO-supported bimetallic catalyst showed significant electrocatalytic activity for methanol oxidation. The influence of different molar compositions of Pt and Pd (1:1, 2:1, and 3:1) on the methanol oxidation efficiency was also evaluated. Among the different Pt/Pd ratios, the 1:1 ratio material showed the lowest onset potential and generated the highest peak current density. The effect of catalyst loading on carbon paper (working electrode) was also studied. Increasing the catalyst loading beyond a certain amount lowered the catalytic activity due to the aggregation of metal particle-loaded GO nanosheets.
Resumo:
For suitable illumination and observation conditions, sparkles may be observed in metallic coatings. The visibility of these sparkles depends critically on their intensity, and on the paint medium surrounding the metallic flakes. Based on previous perception studies from other disciplines, we derive equations for the threshold for sparkles to be visible. The resulting equations show how the visibility of sparkles varies with the luminosity and distance of the light source, the diameter of the metallic flakes, and the reflection properties of the paint medium. The predictions are confirmed by common observations on metallic sparkle. For example, under appropriate conditions even metallic flakes as small as 1 μm diameter may be visible as sparkle, whereas under intense spot light the finer grades of metallic coatings do not show sparkle. We show that in direct sunlight, dark coarse metallic coatings show sparkles that are brighter than the brightest stars and planets in the night sky. Finally, we give equations to predict the number of visually distinguishable flake intensities, depending on local conditions. These equations are confirmed by previous results. Several practical examples for applying the equations derived in this article are provided.
Resumo:
Heritage conservation has raised historical problems usually centered in defects resulting from water leaks. Thus, any intervention is presented as a difficult task, both due to building techniques to be used and the lack of economic resources in many cases. In relation to the temples existing in Alicante (Spain), water drainage is solved with pitched roofs on slope formation (in vaulted naves) or directly supported on the vaulted elements (in the domes). Since those construction systems are composed by brick and plaster, the presence of moisture is problematic, and represents a risk of losing the strength capacity and therefore the stability of the dome. An example of this problem is the dome of the church “Nuestra Señora de Belén” in Crevillente, built with solid bricks, it has the highest diameter of the province (18th century). This historic building has been restored on several occasions in the recent years due to moisture, cracks or fissures. The study of these works give an idea of the difficulties of maintenance, conservation and proper restoration of such kind of buildings as unique and valued constructions in our heritage.
Resumo:
This data set describes different vegetation, soil and plant functional traits (PFTs) of 15 plant species in 30 sampling plots of an agricultural landscape in the Haean-myun catchment in South Korea. We divided the data set into two main tables, the first one includes the PFTs data of the 15 studied plant species, and the second one includes the soil and vegetation characteristics of the 30 sampling plots. For a total of 150 individuals, we measures the maximum plant height (cm) and leaf size (cm**2), which means the leaf surface area for the aboveground compartment of each individual. For the belowground compartment, we measured root horizontal width, which is the maximum horizontal spread of the root, rooting length, which is the maximum rooting depth, root diameter, which is the average root diameter of a the whole root, specific root length (SRL), which is the root length divided by the root dry mass, and root/shoot ratio, which is the root dry mass divided by the shoot dry mass. At each of the 30 studied plots, we estimated three different variables describing the vegetation characteristics: vegetation cover (i.e. the percentage of ground covered by vegetation), species richness (i.e. the number of observed species) and root density (estimated using a 30 cm x 30 cm metallic frame divided into nine 10 cm x 10 cm grids placed on the soil profile), as we calculated the total number of roots that appear in each of the nine grids and then we converted it into percentage based on the root count, following. Moreover, in each plot we estimated six different soil variables: Bulk density (g/cm**3), clay % (i.e. percentage of clay), silt % (i.e. percentage of silt), soil aggregate stability, using mean weight diameter (MWD), penetration resistance (kg/cm**2), using pocket penetrometer and soil shear vane strength (kPa).
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-06
Resumo:
This paper investigates the reflection characteristics of structural or guided waves in rods at a solid/liquid interface. Structural waves, whose wavelengths are much larger than the diameter of the rod, are described in a first approximation by classical one-dimensional wave theory. The reflection characteristics of such waves at a solid/liquid (melting) interface has been reported by two different ultrasonic measurement techniques: first, measuring the fast regression rate of a melting interface during the burning of metal rod samples in an oxygen-enriched environment, and second, monitoring the propagation of the solid/liquid interface during the slow melting and solidification of a rod sample in a furnace. The second work clearly shows that the major reflection occurs from the solid/liquid interface and not the liquid/gas interface as predicted by plane longitudinal wave reflectivity theory. The present work confirms this observation by reporting on the results of some specially designed experiments to identify the main interface of reflection for structural waves in rods. Hence, it helps in explaining the fundamental discrepancy between the reflection characteristics at a solid/liquid interface between low frequency structural waves and high frequency bulk waves, and confirms that the detected echo within a burning metallic rod clearly represents a reflection from the solid/liquid interface. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
The monogeneans Decacotyle lymmae and D. tetrakordyle (Monocotylidae: Decacotylinae), from gills of the dasyatid stingrays Taeniura lymma and Pastinachus sephen, respectively, have a single aperture for adhesive secretion on each side of the anterior ventrolateral region. Rod-shaped bodies (S1) and electron-dense spherical secretion (S2) exit through specialised ducts opening adjacent to one another within these apertures. The S1 bodies are 230 +/- 11 nm wide and greater than or equal to4 mum long in D. lymmae and 240 +/- 9 nm wide and greater than or equal to3.3 mum long in D. tetrakordyle. The S2 bodies have a diameter of 88 +/- 7 nm in D. lymmae and 65 +/- 6 nm in D. tetrakordyle. The apertures are unusual in being extremely small (internal diameter, 3-5 mum). Each aperture has a slit-like surface opening as small as 160 nm wide, surrounded by muscle fibres indicating that they may be opened and closed. The aperture is also surrounded and underlain by muscle fibres that may aid in secretion from, or even eversion of, the tissue within the aperture. Sensilla/cilia are also found within the apertures. Additional secretions from anteromedian and anterolateral glands (body glands), each containing granular secretions, occur in profusion and exit anteriorly and posteriorly to the position of the apertures, through duct openings in the general body tegument. These granular secretions do not appear to be associated with anterior adhesion. Both species show similarities in aperture, underlying tissue, sense organ, and secretion detail, in accordance with findings from other monogenean genera, and which supports the importance of such data for phylogenetic studies.
Resumo:
Cylpebs are slightly tapered cylindrical grinding media with a ratio of length to diameter of unity. The manufactures have made conflicting claims regarding the milling performance of Cylpebs in comparison with balls. One major point of interest is which one grinds finer at the same operating conditions. The difficulty in comparison is due to the shape difference. The two grinding media have different surface area, bulk density and contact mechanisms in grinding action. Comparative tests were conducted using the two types of grinding media in a laboratory Bond ball mill at various conditions of equality such as media mass, size distribution, surface area and input specific energy. The laboratory results indicate that at the same specific energy input level the Cylpebs produce a product with slightly less oversize due to their greater surface area, but essentially the same sizing at the fine end as that produced with the balls. The reason may be that the advantage of greater surface area is balanced by the line contact and area contact grinding actions with the Cylpebs. A new ball mill scale-up procedure [Man, Y.T., 2001. Model-based procedure for scale-up of wet, overflow ball mills, Part 1: outline of the methodology. Minerals Engineering 14 (10), 1237-1246] was employed to predict grinding performance of an industrial mill from the laboratory test results. The predicted full scale operation was compared with the plant survey data. Some problems in the original scale-up procedures were identified. The scale-up procedure was therefore modified to allow the predicted ball mill performance to match the observed one. The calibrated scale-up procedure was used to predict the Cylpebs performance in the full scale industrial mill using the laboratory tests results. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Background: Flexible video bronchoscopes, in particular the Olympus BF Type 3C160, are commonly used in pediatric respiratory medicine. There is no data on the magnification and distortion effects of these bronchoscopes yet important clinical decisions are made from the images. The aim of this study was to systematically describe the magnification and distortion of flexible bronchoscope images taken at various distances from the object. Methods: Using images of known objects and processing these by digital video and computer programs both magnification and distortion scales were derived. Results: Magnification changes as a linear function between 100 mm ( x 1) and 10 mm ( x 9.55) and then as an exponential function between 10 mm and 3 mm ( x 40) from the object. Magnification depends on the axis of orientation of the object to the optic axis or geometrical axis of the bronchoscope. Magnification also varies across the field of view with the central magnification being 39% greater than at the periphery of the field of view at 15 mm from the object. However, in the paediatric situation the diameter of the orifices is usually less than 10 mm and thus this limits the exposure to these peripheral limits of magnification reduction. Intraclass correlations for measurements and repeatability studies between instruments are very high, r = 0.96. Distortion occurs as both barrel and geometric types but both types are heterogeneous across the field of view. Distortion of geometric type ranges up to 30% at 3 mm from the object but may be as low as 5% depending on the position of the object in relation to the optic axis. Conclusion: We conclude that the optimal working distance range is between 40 and 10 mm from the object. However the clinician should be cognisant of both variations in magnification and distortion in clinical judgements.