873 resultados para Diabetes complications
Resumo:
AIMS/HYPOTHESIS: To assess the effects of diabetes-induced activation of protein kinase C (PKC) on voltage-dependent and voltage-independent Ca2+ influx pathways in retinal microvascular smooth muscle cells. METHODS: Cytosolic Ca2+ was estimated in freshly isolated rat retinal arterioles from streptozotocin-induced diabetic and non-diabetic rats using fura-2 microfluorimetry. Voltage-dependent Ca2+ influx was tested by measuring rises in [Ca2+]i with KCl (100 mmol/l) and store-operated Ca2+ influx was assessed by depleting [Ca2+]i stores with Ca2+ free medium containing 5 micromol/l cyclopiazonic acid over 10 min and subsequently measuring the rate of rise in Ca2+ on adding 2 mmol/l or 10 mmol/l Ca2+ solution. RESULTS: Ca2+ entry through voltage-dependent L-type Ca2+ channels was unaffected by diabetes. In contrast, store-operated Ca2+ influx was attenuated. In microvessels from non-diabetic rats 20 mmol/l D-mannitol had no effect on store-operated Ca2+ influx. Diabetic rats injected daily with insulin had store-operated Ca2+ influx rates similar to non-diabetic control rats. The reduced Ca2+ entry in diabetic microvessels was reversed by 2-h exposure to 100 nmol/l staurosporine, a non-specific PKC antagonist and was mimicked in microvessels from non-diabetic rats by 10-min exposure to the PKC activator phorbol myristate acetate (100 nmol/l). The specific PKCbeta antagonist LY379196 (100 nmol/l) also reversed the poor Ca2+ influx although its action was less efficacious than staurosporine. CONCLUSION/INTERPRETATION: These results show that store-operated Ca2+ influx is inhibited in retinal arterioles from rats having sustained increased blood glucose and that PKCbeta seems to play a role in mediating this effect.
Resumo:
Aims/hypothesis: We investigated the association between the incidence of type 1 diabetes mellitus and remoteness (a proxy measure for exposure to infections) using recently developed techniques for statistical analysis of small-area data.
Subjects, materials and methods: New cases in children aged 0 to 14 years in Northern Ireland were prospectively registered from 1989 to 2003. Ecological analysis was conducted using small geographical units (582 electoral wards) and area characteristics including remoteness, deprivation and child population density. Analysis was conducted using Poisson regression models and Bayesian
hierarchical models to allow for spatially correlated risks that were potentially caused by unmeasured explanatory variables.
Results: In Northern Ireland between 1989 and 2003, there were 1,433 new cases of type 1 diabetes, giving a directly standardised incidence rate of 24.7 per 100,000 personyears. Areas in the most remote fifth of all areas had a significantly (p=0.0006) higher incidence of type 1 diabetes mellitus (incidence rate ratio=1.27 [95% CI 1.07, 1.50]) than those in the most accessible fifth of all areas. There was also a higher incidence rate in areas that were less deprived (p<0.0001) and less densely populated (p=0.002). After adjustment for deprivation and additional adjustment for child population density the association between diabetes and remoteness remained significant (p=0.01 and p=0.03, respectively).
Conclusions/interpretation: In Northern Ireland, there is evidence that remote areas experience higher rates of type 1 diabetes mellitus. This could reflect a reduced or delayed exposure to infections, particularly early in life, in these areas.
Resumo:
OBJECTIVE: To confirm that early growth is associated with type 1 diabetes risk in European children and elucidate any role of infant feeding. RESEARCH DESIGN AND METHODS: Five centers participated, each with a population-based register of type 1 diabetes diagnosed at
Resumo:
Dysfunction of the actin cytoskeleton is a key event in the pathogenesis of diabetic nephropathy. We previously reported that certain cytoskeletal genes are upregulated in mesangial cells exposed to a high extracellular glucose concentration. One such gene, caldesmon, lies on chromosome 7q35, a region linked to nephropathy in family studies, making it a candidate susceptibility gene for diabetic nephropathy. We screened all exons, untranslated regions, and a 5-kb region upstream of the gene for variation using denaturing high-performance liquid chromatography technology. An A>G single nucleotide polymorphism (SNP) at position -579 in the promoter region was associated with nephropathy in a case-control study using 393 type 1 diabetic patients from Northern Ireland (odds ratio [OR] 1.38, 95% CI 1.02–1.86, P = 0.03). A similar trend was found in an independent sample from a second center. When the sample groups were combined (n = 606), the association between the -579G allele and nephropathy remained significant (OR 1.35, 1.07–1.70, P = 0.01). The haplotype structure in the surrounding 7-kb region was determined. No single haplotype was more strongly associated with nephropathy than the -579A>G SNP. These results suggest a role for the caldesmon gene in susceptibility to diabetic nephropathy in type 1 diabetes.
Resumo:
Interleukin 18 (IL18) is a proinflammatory cytokine whose levels are increased in the subclinical stage of insulin-dependent (type I) diabetes mellitus. Previous case-control studies have reported associations between IL18 -607C>A and -137G>C promoter polymorphisms and type I diabetes. We performed case-control and family-based association studies employing Pyrosequencing to assess if these IL18 polymorphisms are also associated with the development of type I diabetes in the Northern Ireland population. The chi2 analysis of genotype and allele frequencies for the IL18 polymorphisms in cases (n=433) vs controls (n=426) revealed no significant differences (P>0.05). Assessment of allele transmission distortion from informative parents to affected offspring also failed to confirm previously reported associations. Stratification of these analyses for age-at-onset and HLA-DR type did not reveal any significance associations. In conclusion, our data do not support the strong positive associations of IL18 promoter polymorphisms with type I diabetes reported in previous smaller studies.