937 resultados para Design and Formative Studies of AIED Systems
                                
Resumo:
Aims We conducted a meta-analysis to evaluate the accuracy of quantitative stress myocardial contrast echocardiography (MCE) in coronary artery disease (CAD). Methods and results Database search was performed through January 2008. We included studies evaluating accuracy of quantitative stress MCE for detection of CAD compared with coronary angiography or single-photon emission computed tomography (SPECT) and measuring reserve parameters of A, beta, and A beta. Data from studies were verified and supplemented by the authors of each study. Using random effects meta-analysis, we estimated weighted mean difference (WMD), likelihood ratios (LRs), diagnostic odds ratios (DORs), and summary area under curve (AUC), all with 95% confidence interval (0). Of 1443 studies, 13 including 627 patients (age range, 38-75 years) and comparing MCE with angiography (n = 10), SPECT (n = 1), or both (n = 2) were eligible. WMD (95% CI) were significantly less in CAD group than no-CAD group: 0.12 (0.06-0.18) (P < 0.001), 1.38 (1.28-1.52) (P < 0.001), and 1.47 (1.18-1.76) (P < 0.001) for A, beta, and A beta reserves, respectively. Pooled LRs for positive test were 1.33 (1.13-1.57), 3.76 (2.43-5.80), and 3.64 (2.87-4.78) and LRs for negative test were 0.68 (0.55-0.83), 0.30 (0.24-0.38), and 0.27 (0.22-0.34) for A, beta, and A beta reserves, respectively. Pooled DORs were 2.09 (1.42-3.07), 15.11 (7.90-28.91), and 14.73 (9.61-22.57) and AUCs were 0.637 (0.594-0.677), 0.851 (0.828-0.872), and 0.859 (0.842-0.750) for A, beta, and A beta reserves, respectively. Conclusion Evidence supports the use of quantitative MCE as a non-invasive test for detection of CAD. Standardizing MCE quantification analysis and adherence to reporting standards for diagnostic tests could enhance the quality of evidence in this field.
                                
Resumo:
The superior cervical ganglion (SCG) in mammals varies in structure according to developmental age, body size, gender, lateral asymmetry, the size and nuclear content of neurons and the complexity and synaptic coverage of their dendritic trees. In small and medium-sized mammals, neuron number and size increase from birth to adulthood and, in phylogenetic studies, vary with body size. However, recent studies on larger animals suggest that body weight does not, in general, accurately predict neuron number. We have applied design-based stereological tools at the light-microscopic level to assess the volumetric composition of ganglia and to estimate the numbers and sizes of neurons in SCGs from rats, capybaras and horses. Using transmission electron microscopy, we have obtained design-based estimates of the surface coverage of dendrites by postsynaptic apposition zones and model-based estimates of the numbers and sizes of synaptophysin-labelled axo-dendritic synaptic disks. Linear regression analysis of log-transformed data has been undertaken in order to establish the nature of the relationships between numbers and SCG volume (V(scg)). For SCGs (five per species), the allometric relationship for neuron number (N) is N=35,067xV (scg) (0.781) and that for synapses is N=20,095,000xV (scg) (1.328) , the former being a good predictor and the latter a poor predictor of synapse number. Our findings thus reveal the nature of SCG growth in terms of its main ingredients (neurons, neuropil, blood vessels) and show that larger mammals have SCG neurons exhibiting more complex arborizations and greater numbers of axo-dendritic synapses.
                                
Resumo:
Purpose: The objective of this study was to evaluate the stress on the cortical bone around single body dental implants supporting mandibular complete fixed denture with rigid (Neopronto System-Neodent) or semirigid splinting system (Barra Distal System-Neodent). Methods and Materials: Stress levels on several system components were analyzed through finite element analysis. Focusing on stress concentration at cortical bone around single body dental implants supporting mandibular complete fixed dentures with rigid ( Neopronto System-Neodent) or semirigid splinting system ( Barra Distal System-Neodent), after axial and oblique occlusal loading simulation, applied in the last cantilever element. Results: The results showed that semirigid implant splinting generated lower von Mises stress in the cortical bone under axial loading. Rigid implant splinting generated higher von Mises stress in the cortical bone under oblique loading. Conclusion: It was concluded that the use of a semirigid system for rehabilitation of edentulous mandibles by means of immediate implant-supported fixed complete denture is recommended, because it reduces stress concentration in the cortical bone. As a consequence, bone level is better preserved, and implant survival is improved. Nevertheless, for both situations the cortical bone integrity was protected, because the maximum stress level findings were lower than those pointed in the literature as being harmful. The maximum stress limit for cortical bone (167 MPa) represents the threshold between plastic and elastic state for a given material. Because any force is applied to an object, and there is no deformation, we can conclude that the elastic threshold was not surpassed, keeping its structural integrity. If the force is higher than the plastic threshold, the object will suffer permanent deformation. In cortical bone, this represents the beginning of bone resorption and/or remodeling processes, which, according to our simulated loading, would not occur. ( Implant Dent 2010; 19:39-49)
                                
Resumo:
GH actions are dependent on receptor dimerization. The GH receptor antagonist, B2036-PEG, has been developed for treating acromegaly. B2036 has mutations in site 1 to enhance receptor binding and in site 2 to block receptor dimerization. Pegylation (B2036-PEG) increases half-life and lowers immunogenicity, but high concentrations are required to control insulin-like growth factor-I levels. We examined antagonist structure and function and the impact of pegylation on biological efficacy. Unpegylated B2036 had a 4.5-fold greater affinity for GH binding protein (GHBP) than GH but similar affinity for membrane receptor. Pegylation substantially reduced membrane binding affinity and receptor antagonism, as assessed by a transcription assay, by 39- and 20-fold, respectively. GHBP reduced antagonist activity of unpegylated B2036 but did not effect antagonism by B2036-PEG. B2036 down-regulated receptors, and membrane binding sites doubled in the presence of dimerization-blocking antibodies, suggesting that B2036 binds to a receptor dimer. It is concluded that the high concentration requirement of B2036-PEG for clinical efficacy relates to pegylation, which decreases binding to membrane receptor but has the advantages of reduced clearance, immunogenicity, and interactions with GHBP. Our studies suggest that B2036 binds to a receptor dimer and induces internalization but not signaling.
                                
Resumo:
Objective: To describe new measures of risk from case-control and cohort studies, which are simple to understand and relate to numbers of the population at risk. Design: Theoretical development of new measures of risk. Setting: Review of literature and previously described measures. Main results: The new measures are: (1) the population impact number (PIN), the number of those in the whole population among whom one case is attributable to the exposure or risk factor (this is equivalent to the reciprocal of the population attributable risk),- (2) the case impact number (CIN) the number of people with the disease or outcome for whom one case will be attributable to the exposure or risk factor (this is equivalent to the reciprocal of the population attributable fraction); (3) the exposure impact number (EIN) the number of people with the exposure among whom one excess case is attributable to the exposure (this is equivalent to the reciprocal of the attributable risk); (4) the exposed cases impact number (ECIN) the number of exposed cases among whom one case is attributable to the exposure (this is equivalent to the reciprocal of the aetiological fraction). The impact number reflects the number of people in each population (the whole population, the cases, all those exposed, and the exposed cases) among whom one case is attributable to the particular risk factor. Conclusions: These new measures should help communicate the impact on a population, of estimates of risk derived from cohort or case-control studies.
                                
Resumo:
Study objective: To assess the representativeness of survey participants by systematically comparing volunteers in a national health and sexuality survey with the Australian population in terms of self reported health status (including the SF-36) and a wide range of demographic characteristics. Design: A cross sectional sample of Australian residents were compared with demographic data from the 1996 Australian census and health data from the 1995 National Health Survey. Setting: The Australian population. Participants: A stratified random sample of adults aged 18-59 years drawn from the Australian electoral roll, a compulsory register of voters. Interviews were completed with 1784 people, representing 40% of those initially selected (58% of those for whom a valid telephone number could be located). Main results: Participants were of similar age and sex to the national population. Consistent with prior research, respondents had higher socioeconomic status, more education, were more likely to be employed, and less likely to be immigrants. The prevalence estimates, means, and variances of self reported mental and physical health measures (for example, SF-36 subscales, women's health indicators, current smoking status) were similar to population norms. Conclusions: These findings considerably strengthen inferences about the representativeness of data on health status from volunteer samples used in health and sexuality surveys.
                                
Resumo:
The main goal of this research study was the removal of Cu(II), Ni(II) and Zn(II) from aqueous solutions using peanut hulls. This work was mainly focused on the following aspects: chemical characterization of the biosorbent, kinetic studies, study of the pH influence in mono-component systems, equilibrium isotherms and column studies, both in mono and tri-component systems, and with a real industrial effluent from the electroplating industry. The chemical characterization of peanut hulls showed a high cellulose (44.8%) and lignin (36.1%) content, which favours biosorption of metal cations. The kinetic studies performed indicate that most of the sorption occurs in the first 30 min for all systems. In general, a pseudo-second order kinetics was followed, both in mono and tri-component systems. The equilibrium isotherms were better described by Freundlich model in all systems. Peanut hulls showed higher affinity for copper than for nickel and zinc when they are both present. The pH value between 5 and 6 was the most favourable for all systems. The sorbent capacity in column was 0.028 and 0.025 mmol g-1 for copper, respectively in mono and tri-component systems. A decrease of capacity for copper (50%) was observed when dealing with the real effluent. The Yoon-Nelson, Thomas and Yan’s models were fitted to the experimental data, being the latter the best fit.
                                
Resumo:
Our day-to-day life is dependent on several embedded devices, and in the near future, many more objects will have computation and communication capabilities enabling an Internet of Things. Correspondingly, with an increase in the interaction of these devices around us, developing novel applications is set to become challenging with current software infrastructures. In this paper, we argue that a new paradigm for operating systems needs to be conceptualized to provide aconducive base for application development on Cyber-physical systems. We demonstrate its need and importance using a few use-case scenarios and provide the design principles behind, and an architecture of a co-operating system or CoS that can serve as an example of this new paradigm.
                                
Resumo:
Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para a obtenção do Grau de Mestre em Engenharia Informática.
                                
Resumo:
The disturbing emergence of multidrug-resistant strains of Mycobacterium tuberculosis (Mtb) has been driving the scientific community to urgently search for new and efficient antitubercular drugs. Despite the various drugs currently under evaluation, isoniazid is still the key and most effective component in all multi-therapeutic regimens recommended by the WHO. This paper describes the QSAR-oriented design, synthesis and in vitro antitubercular activity of several potent isoniazid derivatives (isonicotinoyl hydrazones and isonicotinoyl hydrazides) against H37Rv and two resistant Mtb strains. QSAR studies entailed RFs and ASNNs classification models, as well as MLR models. Strict validation procedures were used to guarantee the models' robustness and predictive ability. Lipophilicity was shown not to be relevant to explain the activity of these derivatives, whereas shorter N-N distances and lengthy substituents lead to more active compounds. Compounds I, 2, 4, 5 and 6, showed measured activities against H37Rv higher than INH (i.e., MIC <= 0.28 mu M), while compound 9 exhibited a six fold decrease in MIC against the katG (S315T) mutated strain, by comparison with INH (Le., 6.9 vs. 43.8 mu M). All compounds were ineffective against H37Rv(INH) (Delta katG), a strain with a full deletion of the katG gene, thus corroborating the importance of KatG in the activation of INH-based compounds. The most potent compounds were also shown not to be cytotoxic up to a concentration 500 times higher than MIC. (C) 2014 Elsevier Masson SAS. All rights reserved.
                                
Resumo:
Dissertation submitted in partial fulfilment of the requirements for the Degree of Master of Science in Geospatial Technologies
                                
Resumo:
Dissertação apresentada para obtenção do Grau de Doutor em Engenharia Química, especialidade de Operações Unitárias e Fenómenos de Transferência, pela Universidade Nova de Lisboa, Faculdade de Ciências e Tecnologia
                                
Resumo:
Demand response programs and models have been developed and implemented for an improved performance of electricity markets, taking full advantage of smart grids. Studying and addressing the consumers’ flexibility and network operation scenarios makes possible to design improved demand response models and programs. The methodology proposed in the present paper aims to address the definition of demand response programs that consider the demand shifting between periods, regarding the occurrence of multi-period demand response events. The optimization model focuses on minimizing the network and resources operation costs for a Virtual Power Player. Quantum Particle Swarm Optimization has been used in order to obtain the solutions for the optimization model that is applied to a large set of operation scenarios. The implemented case study illustrates the use of the proposed methodology to support the decisions of the Virtual Power Player in what concerns the duration of each demand response event.
                                
Resumo:
Proceedings of the 10th Mediterranean Conference on Control and Automation - MED2002 Lisbon, Portugal, July 9-12, 2002
                                
Resumo:
The use of buffers to maintain the pH within a desired range is a very common practice in chemical, biochemical and biological studies. Among them, zwitterionic N-substituted aminosulfonic acids, usually known as Good’s buffers, although widely used, can complex metals and interact with biological systems. The present work reviews, discusses and updates the metal complexation characteristics of thirty one commercially available buffers. In addition, their impact on biological systems is also presented. The influences of these buffers on the results obtained in biological, biochemical and environmental studies, with special focus on their interaction with metal ions, are highlighted and critically reviewed. Using chemical speciation simulations, based on the current knowledge of the metal–buffer stability constants, a proposal of the most adequate buffer to employ for a given metal ion is presented.
 
                    