956 resultados para Data compression (Computer science)
Resumo:
Abstract not available
Resumo:
In today’s big data world, data is being produced in massive volumes, at great velocity and from a variety of different sources such as mobile devices, sensors, a plethora of small devices hooked to the internet (Internet of Things), social networks, communication networks and many others. Interactive querying and large-scale analytics are being increasingly used to derive value out of this big data. A large portion of this data is being stored and processed in the Cloud due the several advantages provided by the Cloud such as scalability, elasticity, availability, low cost of ownership and the overall economies of scale. There is thus, a growing need for large-scale cloud-based data management systems that can support real-time ingest, storage and processing of large volumes of heterogeneous data. However, in the pay-as-you-go Cloud environment, the cost of analytics can grow linearly with the time and resources required. Reducing the cost of data analytics in the Cloud thus remains a primary challenge. In my dissertation research, I have focused on building efficient and cost-effective cloud-based data management systems for different application domains that are predominant in cloud computing environments. In the first part of my dissertation, I address the problem of reducing the cost of transactional workloads on relational databases to support database-as-a-service in the Cloud. The primary challenges in supporting such workloads include choosing how to partition the data across a large number of machines, minimizing the number of distributed transactions, providing high data availability, and tolerating failures gracefully. I have designed, built and evaluated SWORD, an end-to-end scalable online transaction processing system, that utilizes workload-aware data placement and replication to minimize the number of distributed transactions that incorporates a suite of novel techniques to significantly reduce the overheads incurred both during the initial placement of data, and during query execution at runtime. In the second part of my dissertation, I focus on sampling-based progressive analytics as a means to reduce the cost of data analytics in the relational domain. Sampling has been traditionally used by data scientists to get progressive answers to complex analytical tasks over large volumes of data. Typically, this involves manually extracting samples of increasing data size (progressive samples) for exploratory querying. This provides the data scientists with user control, repeatable semantics, and result provenance. However, such solutions result in tedious workflows that preclude the reuse of work across samples. On the other hand, existing approximate query processing systems report early results, but do not offer the above benefits for complex ad-hoc queries. I propose a new progressive data-parallel computation framework, NOW!, that provides support for progressive analytics over big data. In particular, NOW! enables progressive relational (SQL) query support in the Cloud using unique progress semantics that allow efficient and deterministic query processing over samples providing meaningful early results and provenance to data scientists. NOW! enables the provision of early results using significantly fewer resources thereby enabling a substantial reduction in the cost incurred during such analytics. Finally, I propose NSCALE, a system for efficient and cost-effective complex analytics on large-scale graph-structured data in the Cloud. The system is based on the key observation that a wide range of complex analysis tasks over graph data require processing and reasoning about a large number of multi-hop neighborhoods or subgraphs in the graph; examples include ego network analysis, motif counting in biological networks, finding social circles in social networks, personalized recommendations, link prediction, etc. These tasks are not well served by existing vertex-centric graph processing frameworks whose computation and execution models limit the user program to directly access the state of a single vertex, resulting in high execution overheads. Further, the lack of support for extracting the relevant portions of the graph that are of interest to an analysis task and loading it onto distributed memory leads to poor scalability. NSCALE allows users to write programs at the level of neighborhoods or subgraphs rather than at the level of vertices, and to declaratively specify the subgraphs of interest. It enables the efficient distributed execution of these neighborhood-centric complex analysis tasks over largescale graphs, while minimizing resource consumption and communication cost, thereby substantially reducing the overall cost of graph data analytics in the Cloud. The results of our extensive experimental evaluation of these prototypes with several real-world data sets and applications validate the effectiveness of our techniques which provide orders-of-magnitude reductions in the overheads of distributed data querying and analysis in the Cloud.
Resumo:
Responsible Research Data Management (RDM) is a pillar of quality research. In practice good RDM requires the support of a well-functioning Research Data Infrastructure (RDI). One of the challenges the research community is facing is how to fund the management of research data and the required infrastructure. Knowledge Exchange and Science Europe have both defined activities to explore how RDM/RDI are, or can be, funded. Independently they each planned to survey users and providers of data services and on becoming aware of the similar objectives and approaches, the Science Europe Working Group on Research Data and the Knowledge Exchange Research Data expert group joined forces and devised a joint activity to to inform the discussion on the funding of RDM/RDI in Europe.
Resumo:
Discovery Driven Analysis (DDA) is a common feature of OLAP technology to analyze structured data. In essence, DDA helps analysts to discover anomalous data by highlighting 'unexpected' values in the OLAP cube. By giving indications to the analyst on what dimensions to explore, DDA speeds up the process of discovering anomalies and their causes. However, Discovery Driven Analysis (and OLAP in general) is only applicable on structured data, such as records in databases. We propose a system to extend DDA technology to semi-structured text documents, that is, text documents with a few structured data. Our system pipeline consists of two stages: first, the text part of each document is structured around user specified dimensions, using semi-PLSA algorithm; then, we adapt DDA to these fully structured documents, thus enabling DDA on text documents. We present some applications of this system in OLAP analysis and show how scalability issues are solved. Results show that our system can handle reasonable datasets of documents, in real time, without any need for pre-computation.
Resumo:
Increasing the size of training data in many computer vision tasks has shown to be very effective. Using large scale image datasets (e.g. ImageNet) with simple learning techniques (e.g. linear classifiers) one can achieve state-of-the-art performance in object recognition compared to sophisticated learning techniques on smaller image sets. Semantic search on visual data has become very popular. There are billions of images on the internet and the number is increasing every day. Dealing with large scale image sets is intense per se. They take a significant amount of memory that makes it impossible to process the images with complex algorithms on single CPU machines. Finding an efficient image representation can be a key to attack this problem. A representation being efficient is not enough for image understanding. It should be comprehensive and rich in carrying semantic information. In this proposal we develop an approach to computing binary codes that provide a rich and efficient image representation. We demonstrate several tasks in which binary features can be very effective. We show how binary features can speed up large scale image classification. We present learning techniques to learn the binary features from supervised image set (With different types of semantic supervision; class labels, textual descriptions). We propose several problems that are very important in finding and using efficient image representation.
Resumo:
Data leakage is a serious issue and can result in the loss of sensitive data, compromising user accounts and details, potentially affecting millions of internet users. This paper contributes to research in online security and reducing personal footprint by evaluating the levels of privacy provided by the Firefox browser. The aim of identifying conditions that would minimize data leakage and maximize data privacy is addressed by assessing and comparing data leakage in the four possible browsing modes: normal and private modes using a browser installed on the host PC or using a portable browser from a connected USB device respectively. To provide a firm foundation for analysis, a series of carefully designed, pre-planned browsing sessions were repeated in each of the various modes of Firefox. This included low RAM environments to determine any effects low RAM may have on browser data leakage. The results show that considerable data leakage may occur within Firefox. In normal mode, all of the browsing information is stored within the Mozilla profile folder in Firefox-specific SQLite databases and sessionstore.js. While passwords were not stored as plain text, other confidential information such as credit card numbers could be recovered from the Form history under certain conditions. There is no difference when using a portable browser in normal mode, except that the Mozilla profile folder is located on the USB device rather than the host's hard disk. By comparison, private browsing reduces data leakage. Our findings confirm that no information is written to the Firefox-related locations on the hard disk or USB device during private browsing, implying that no deletion would be necessary and no remnants of data would be forensically recoverable from unallocated space. However, two aspects of data leakage occurred equally in all four browsing modes. Firstly, all of the browsing history was stored in the live RAM and was therefore accessible while the browser remained open. Secondly, in low RAM situations, the operating system caches out RAM to pagefile.sys on the host's hard disk. Irrespective of the browsing mode used, this may include Firefox history elements which can then remain forensically recoverable for considerable time.
Resumo:
Cancer and cardio-vascular diseases are the leading causes of death world-wide. Caused by systemic genetic and molecular disruptions in cells, these disorders are the manifestation of profound disturbance of normal cellular homeostasis. People suffering or at high risk for these disorders need early diagnosis and personalized therapeutic intervention. Successful implementation of such clinical measures can significantly improve global health. However, development of effective therapies is hindered by the challenges in identifying genetic and molecular determinants of the onset of diseases; and in cases where therapies already exist, the main challenge is to identify molecular determinants that drive resistance to the therapies. Due to the progress in sequencing technologies, the access to a large genome-wide biological data is now extended far beyond few experimental labs to the global research community. The unprecedented availability of the data has revolutionized the capabilities of computational researchers, enabling them to collaboratively address the long standing problems from many different perspectives. Likewise, this thesis tackles the two main public health related challenges using data driven approaches. Numerous association studies have been proposed to identify genomic variants that determine disease. However, their clinical utility remains limited due to their inability to distinguish causal variants from associated variants. In the presented thesis, we first propose a simple scheme that improves association studies in supervised fashion and has shown its applicability in identifying genomic regulatory variants associated with hypertension. Next, we propose a coupled Bayesian regression approach -- eQTeL, which leverages epigenetic data to estimate regulatory and gene interaction potential, and identifies combinations of regulatory genomic variants that explain the gene expression variance. On human heart data, eQTeL not only explains a significantly greater proportion of expression variance in samples, but also predicts gene expression more accurately than other methods. We demonstrate that eQTeL accurately detects causal regulatory SNPs by simulation, particularly those with small effect sizes. Using various functional data, we show that SNPs detected by eQTeL are enriched for allele-specific protein binding and histone modifications, which potentially disrupt binding of core cardiac transcription factors and are spatially proximal to their target. eQTeL SNPs capture a substantial proportion of genetic determinants of expression variance and we estimate that 58% of these SNPs are putatively causal. The challenge of identifying molecular determinants of cancer resistance so far could only be dealt with labor intensive and costly experimental studies, and in case of experimental drugs such studies are infeasible. Here we take a fundamentally different data driven approach to understand the evolving landscape of emerging resistance. We introduce a novel class of genetic interactions termed synthetic rescues (SR) in cancer, which denotes a functional interaction between two genes where a change in the activity of one vulnerable gene (which may be a target of a cancer drug) is lethal, but subsequently altered activity of its partner rescuer gene restores cell viability. Next we describe a comprehensive computational framework --termed INCISOR-- for identifying SR underlying cancer resistance. Applying INCISOR to mine The Cancer Genome Atlas (TCGA), a large collection of cancer patient data, we identified the first pan-cancer SR networks, composed of interactions common to many cancer types. We experimentally test and validate a subset of these interactions involving the master regulator gene mTOR. We find that rescuer genes become increasingly activated as breast cancer progresses, testifying to pervasive ongoing rescue processes. We show that SRs can be utilized to successfully predict patients' survival and response to the majority of current cancer drugs, and importantly, for predicting the emergence of drug resistance from the initial tumor biopsy. Our analysis suggests a potential new strategy for enhancing the effectiveness of existing cancer therapies by targeting their rescuer genes to counteract resistance. The thesis provides statistical frameworks that can harness ever increasing high throughput genomic data to address challenges in determining the molecular underpinnings of hypertension, cardiovascular disease and cancer resistance. We discover novel molecular mechanistic insights that will advance the progress in early disease prevention and personalized therapeutics. Our analyses sheds light on the fundamental biological understanding of gene regulation and interaction, and opens up exciting avenues of translational applications in risk prediction and therapeutics.
Resumo:
Edge-labeled graphs have proliferated rapidly over the last decade due to the increased popularity of social networks and the Semantic Web. In social networks, relationships between people are represented by edges and each edge is labeled with a semantic annotation. Hence, a huge single graph can express many different relationships between entities. The Semantic Web represents each single fragment of knowledge as a triple (subject, predicate, object), which is conceptually identical to an edge from subject to object labeled with predicates. A set of triples constitutes an edge-labeled graph on which knowledge inference is performed. Subgraph matching has been extensively used as a query language for patterns in the context of edge-labeled graphs. For example, in social networks, users can specify a subgraph matching query to find all people that have certain neighborhood relationships. Heavily used fragments of the SPARQL query language for the Semantic Web and graph queries of other graph DBMS can also be viewed as subgraph matching over large graphs. Though subgraph matching has been extensively studied as a query paradigm in the Semantic Web and in social networks, a user can get a large number of answers in response to a query. These answers can be shown to the user in accordance with an importance ranking. In this thesis proposal, we present four different scoring models along with scalable algorithms to find the top-k answers via a suite of intelligent pruning techniques. The suggested models consist of a practically important subset of the SPARQL query language augmented with some additional useful features. The first model called Substitution Importance Query (SIQ) identifies the top-k answers whose scores are calculated from matched vertices' properties in each answer in accordance with a user-specified notion of importance. The second model called Vertex Importance Query (VIQ) identifies important vertices in accordance with a user-defined scoring method that builds on top of various subgraphs articulated by the user. Approximate Importance Query (AIQ), our third model, allows partial and inexact matchings and returns top-k of them with a user-specified approximation terms and scoring functions. In the fourth model called Probabilistic Importance Query (PIQ), a query consists of several sub-blocks: one mandatory block that must be mapped and other blocks that can be opportunistically mapped. The probability is calculated from various aspects of answers such as the number of mapped blocks, vertices' properties in each block and so on and the most top-k probable answers are returned. An important distinguishing feature of our work is that we allow the user a huge amount of freedom in specifying: (i) what pattern and approximation he considers important, (ii) how to score answers - irrespective of whether they are vertices or substitution, and (iii) how to combine and aggregate scores generated by multiple patterns and/or multiple substitutions. Because so much power is given to the user, indexing is more challenging than in situations where additional restrictions are imposed on the queries the user can ask. The proposed algorithms for the first model can also be used for answering SPARQL queries with ORDER BY and LIMIT, and the method for the second model also works for SPARQL queries with GROUP BY, ORDER BY and LIMIT. We test our algorithms on multiple real-world graph databases, showing that our algorithms are far more efficient than popular triple stores.
Resumo:
Rigid adherence to pre-specified thresholds and static graphical representations can lead to incorrect decisions on merging of clusters. As an alternative to existing automated or semi-automated methods, we developed a visual analytics approach for performing hierarchical clustering analysis of short time-series gene expression data. Dynamic sliders control parameters such as the similarity threshold at which clusters are merged and the level of relative intra-cluster distinctiveness, which can be used to identify "weak-edges" within clusters. An expert user can drill down to further explore the dendrogram and detect nested clusters and outliers. This is done by using the sliders and by pointing and clicking on the representation to cut the branches of the tree in multiple-heights. A prototype of this tool has been developed in collaboration with a small group of biologists for analysing their own datasets. Initial feedback on the tool has been positive.
Resumo:
Choosing a single similarity threshold for cutting dendrograms is not sufficient for performing hierarchical clustering analysis of heterogeneous data sets. In addition, alternative automated or semi-automated methods that cut dendrograms in multiple levels make assumptions about the data in hand. In an attempt to help the user to find patterns in the data and resolve ambiguities in cluster assignments, we developed MLCut: a tool that provides visual support for exploring dendrograms of heterogeneous data sets in different levels of detail. The interactive exploration of the dendrogram is coordinated with a representation of the original data, shown as parallel coordinates. The tool supports three analysis steps. Firstly, a single-height similarity threshold can be applied using a dynamic slider to identify the main clusters. Secondly, a distinctiveness threshold can be applied using a second dynamic slider to identify “weak-edges” that indicate heterogeneity within clusters. Thirdly, the user can drill-down to further explore the dendrogram structure - always in relation to the original data - and cut the branches of the tree at multiple levels. Interactive drill-down is supported using mouse events such as hovering, pointing and clicking on elements of the dendrogram. Two prototypes of this tool have been developed in collaboration with a group of biologists for analysing their own data sets. We found that enabling the users to cut the tree at multiple levels, while viewing the effect in the original data, is a promising method for clustering which could lead to scientific discoveries.
Resumo:
Datacenters have emerged as the dominant form of computing infrastructure over the last two decades. The tremendous increase in the requirements of data analysis has led to a proportional increase in power consumption and datacenters are now one of the fastest growing electricity consumers in the United States. Another rising concern is the loss of throughput due to network congestion. Scheduling models that do not explicitly account for data placement may lead to a transfer of large amounts of data over the network causing unacceptable delays. In this dissertation, we study different scheduling models that are inspired by the dual objectives of minimizing energy costs and network congestion in a datacenter. As datacenters are equipped to handle peak workloads, the average server utilization in most datacenters is very low. As a result, one can achieve huge energy savings by selectively shutting down machines when demand is low. In this dissertation, we introduce the network-aware machine activation problem to find a schedule that simultaneously minimizes the number of machines necessary and the congestion incurred in the network. Our model significantly generalizes well-studied combinatorial optimization problems such as hard-capacitated hypergraph covering and is thus strongly NP-hard. As a result, we focus on finding good approximation algorithms. Data-parallel computation frameworks such as MapReduce have popularized the design of applications that require a large amount of communication between different machines. Efficient scheduling of these communication demands is essential to guarantee efficient execution of the different applications. In the second part of the thesis, we study the approximability of the co-flow scheduling problem that has been recently introduced to capture these application-level demands. Finally, we also study the question, "In what order should one process jobs?'' Often, precedence constraints specify a partial order over the set of jobs and the objective is to find suitable schedules that satisfy the partial order. However, in the presence of hard deadline constraints, it may be impossible to find a schedule that satisfies all precedence constraints. In this thesis we formalize different variants of job scheduling with soft precedence constraints and conduct the first systematic study of these problems.
Resumo:
Nigerian scam, also known as advance fee fraud or 419 scam, is a prevalent form of online fraudulent activity that causes financial loss to individuals and businesses. Nigerian scam has evolved from simple non-targeted email messages to more sophisticated scams targeted at users of classifieds, dating and other websites. Even though such scams are observed and reported by users frequently, the community’s understanding of Nigerian scams is limited since the scammers operate “underground”. To better understand the underground Nigerian scam ecosystem and seek effective methods to deter Nigerian scam and cybercrime in general, we conduct a series of active and passive measurement studies. Relying upon the analysis and insight gained from the measurement studies, we make four contributions: (1) we analyze the taxonomy of Nigerian scam and derive long-term trends in scams; (2) we provide an insight on Nigerian scam and cybercrime ecosystems and their underground operation; (3) we propose a payment intervention as a potential deterrent to cybercrime operation in general and evaluate its effectiveness; and (4) we offer active and passive measurement tools and techniques that enable in-depth analysis of cybercrime ecosystems and deterrence on them. We first created and analyze a repository of more than two hundred thousand user-reported scam emails, stretching from 2006 to 2014, from four major scam reporting websites. We select ten most commonly observed scam categories and tag 2,000 scam emails randomly selected from our repository. Based upon the manually tagged dataset, we train a machine learning classifier and cluster all scam emails in the repository. From the clustering result, we find a strong and sustained upward trend for targeted scams and downward trend for non-targeted scams. We then focus on two types of targeted scams: sales scams and rental scams targeted users on Craigslist. We built an automated scam data collection system and gathered large-scale sales scam emails. Using the system we posted honeypot ads on Craigslist and conversed automatically with the scammers. Through the email conversation, the system obtained additional confirmation of likely scam activities and collected additional information such as IP addresses and shipping addresses. Our analysis revealed that around 10 groups were responsible for nearly half of the over 13,000 total scam attempts we received. These groups used IP addresses and shipping addresses in both Nigeria and the U.S. We also crawled rental ads on Craigslist, identified rental scam ads amongst the large number of benign ads and conversed with the potential scammers. Through in-depth analysis of the rental scams, we found seven major scam campaigns employing various operations and monetization methods. We also found that unlike sales scammers, most rental scammers were in the U.S. The large-scale scam data and in-depth analysis provide useful insights on how to design effective deterrence techniques against cybercrime in general. We study underground DDoS-for-hire services, also known as booters, and measure the effectiveness of undermining a payment system of DDoS Services. Our analysis shows that the payment intervention can have the desired effect of limiting cybercriminals’ ability and increasing the risk of accepting payments.
Resumo:
This thesis reports on an investigation of the feasibility and usefulness of incorporating dynamic management facilities for managing sensed context data in a distributed contextaware mobile application. The investigation focuses on reducing the work required to integrate new sensed context streams in an existing context aware architecture. Current architectures require integration work for new streams and new contexts that are encountered. This means of operation is acceptable for current fixed architectures. However, as systems become more mobile the number of discoverable streams increases. Without the ability to discover and use these new streams the functionality of any given device will be limited to the streams that it knows how to decode. The integration of new streams requires that the sensed context data be understood by the current application. If the new source provides data of a type that an application currently requires then the new source should be connected to the application without any prior knowledge of the new source. If the type is similar and can be converted then this stream too should be appropriated by the application. Such applications are based on portable devices (phones, PDAs) for semi-autonomous services that use data from sensors connected to the devices, plus data exchanged with other such devices and remote servers. Such applications must handle input from a variety of sensors, refining the data locally and managing its communication from the device in volatile and unpredictable network conditions. The choice to focus on locally connected sensory input allows for the introduction of privacy and access controls. This local control can determine how the information is communicated to others. This investigation focuses on the evaluation of three approaches to sensor data management. The first system is characterised by its static management based on the pre-pended metadata. This was the reference system. Developed for a mobile system, the data was processed based on the attached metadata. The code that performed the processing was static. The second system was developed to move away from the static processing and introduce a greater freedom of handling for the data stream, this resulted in a heavy weight approach. The approach focused on pushing the processing of the data into a number of networked nodes rather than the monolithic design of the previous system. By creating a separate communication channel for the metadata it is possible to be more flexible with the amount and type of data transmitted. The final system pulled the benefits of the other systems together. By providing a small management class that would load a separate handler based on the incoming data, Dynamism was maximised whilst maintaining ease of code understanding. The three systems were then compared to highlight their ability to dynamically manage new sensed context. The evaluation took two approaches, the first is a quantitative analysis of the code to understand the complexity of the relative three systems. This was done by evaluating what changes to the system were involved for the new context. The second approach takes a qualitative view of the work required by the software engineer to reconfigure the systems to provide support for a new data stream. The evaluation highlights the various scenarios in which the three systems are most suited. There is always a trade-o↵ in the development of a system. The three approaches highlight this fact. The creation of a statically bound system can be quick to develop but may need to be completely re-written if the requirements move too far. Alternatively a highly dynamic system may be able to cope with new requirements but the developer time to create such a system may be greater than the creation of several simpler systems.
Resumo:
Due to the growth of design size and complexity, design verification is an important aspect of the Logic Circuit development process. The purpose of verification is to validate that the design meets the system requirements and specification. This is done by either functional or formal verification. The most popular approach to functional verification is the use of simulation based techniques. Using models to replicate the behaviour of an actual system is called simulation. In this thesis, a software/data structure architecture without explicit locks is proposed to accelerate logic gate circuit simulation. We call thus system ZSIM. The ZSIM software architecture simulator targets low cost SIMD multi-core machines. Its performance is evaluated on the Intel Xeon Phi and 2 other machines (Intel Xeon and AMD Opteron). The aim of these experiments is to: • Verify that the data structure used allows SIMD acceleration, particularly on machines with gather instructions ( section 5.3.1). • Verify that, on sufficiently large circuits, substantial gains could be made from multicore parallelism ( section 5.3.2 ). • Show that a simulator using this approach out-performs an existing commercial simulator on a standard workstation ( section 5.3.3 ). • Show that the performance on a cheap Xeon Phi card is competitive with results reported elsewhere on much more expensive super-computers ( section 5.3.5 ). To evaluate the ZSIM, two types of test circuits were used: 1. Circuits from the IWLS benchmark suit [1] which allow direct comparison with other published studies of parallel simulators.2. Circuits generated by a parametrised circuit synthesizer. The synthesizer used an algorithm that has been shown to generate circuits that are statistically representative of real logic circuits. The synthesizer allowed testing of a range of very large circuits, larger than the ones for which it was possible to obtain open source files. The experimental results show that with SIMD acceleration and multicore, ZSIM gained a peak parallelisation factor of 300 on Intel Xeon Phi and 11 on Intel Xeon. With only SIMD enabled, ZSIM achieved a maximum parallelistion gain of 10 on Intel Xeon Phi and 4 on Intel Xeon. Furthermore, it was shown that this software architecture simulator running on a SIMD machine is much faster than, and can handle much bigger circuits than a widely used commercial simulator (Xilinx) running on a workstation. The performance achieved by ZSIM was also compared with similar pre-existing work on logic simulation targeting GPUs and supercomputers. It was shown that ZSIM simulator running on a Xeon Phi machine gives comparable simulation performance to the IBM Blue Gene supercomputer at very much lower cost. The experimental results have shown that the Xeon Phi is competitive with simulation on GPUs and allows the handling of much larger circuits than have been reported for GPU simulation. When targeting Xeon Phi architecture, the automatic cache management of the Xeon Phi, handles and manages the on-chip local store without any explicit mention of the local store being made in the architecture of the simulator itself. However, targeting GPUs, explicit cache management in program increases the complexity of the software architecture. Furthermore, one of the strongest points of the ZSIM simulator is its portability. Note that the same code was tested on both AMD and Xeon Phi machines. The same architecture that efficiently performs on Xeon Phi, was ported into a 64 core NUMA AMD Opteron. To conclude, the two main achievements are restated as following: The primary achievement of this work was proving that the ZSIM architecture was faster than previously published logic simulators on low cost platforms. The secondary achievement was the development of a synthetic testing suite that went beyond the scale range that was previously publicly available, based on prior work that showed the synthesis technique is valid.
Resumo:
C3S2E '16 Proceedings of the Ninth International C* Conference on Computer Science & Software Engineering