972 resultados para D-amino Acid
Resumo:
Soil salinity is a major abiotic stress influencing plant productivity worldwide. Schinopsis quebracho colorado is one of the most important woody species in the Gran Chaco, an and and salt-prone subtropical biome of South America. To gain a better understanding of the physiological mechanisms that allow plant establishment under salt conditions, germination and seedling growth of S. quebracho colorado were examined under treatment with a range of NaCl solutions (germination: 0-300 mmol l(-1) NaCl; seedling growth: 0-200 mmol l(-1) NaCl). The aim was to test the hypothesis that S. quebracho colorado is a glycophite that shows different salt tolerance responses with development stage. Proline content, total soluble carbohydrates and Na+, K+ and Cl- concentrations in leaves and roots of seedlings, and the chlorophyll concentration and relative water content of leaves were measured. Germination was not affected by 100 mmol l(-1) NaCl, but decreased at a concentration of 200 mmol l(-1). At 300 mmol l(-1) NaCl, germination did not occur. Seedling growth decreased drastically with increasing salinity. An increase in NaCl from 0 to 100 mmol l(-1) also significantly reduced the leaf relative water content by 22% and increased the proline concentration by 60% in roots. In contrast, total soluble carbohydrates were not significantly affected by salinity. Seedlings showed a sodium exclusion capacity, and there was an inverse correlation between Cl- concentration and the total chlorophyll concentration. S. quebracho colorado was more tolerant to salinity during germination than in the seedling phase. The results suggest that this increased tolerance during germination might, in part, be the result of lower sensitivity to high tissue Na+ concentrations. The significant increment of proline in the roots suggests the positive role of this amino acid as a compatible solute in balancing the accumulation of Na+ and Cl- as a result of salinity. These results help clarify the physiological mechanisms that allow establishment of S. quebracho colorado on salt-affected soils in arid and semi-arid Gran Chaco. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
beta-1,3-1,4-Glucanases (E.C. 3.2.1.73) hydrolyze linked beta-D-glucans, such as lichenan and barley beta-glucan. Recombinant beta-1,3-1,4-glucanase from Bacillus subtilis expressed in Escherichia coil and purified by Ni-NTA chromatography exhibited optimum activity at 50 degrees C and pH 6.0. The catalytic half-life at 60 degrees C decreased from 90 to 5 min when the enzyme was incubated in the presence and absence of Ca(2+) respectively. The kinetic parameters of lichenan hydrolysis were 2695, 3.1 and 1220 for V(max) (mu mol/min/mg), K(m) (mg mL(-1)) and K(cat) (s(-1)), respectively. Analysis by DLS, AUC and SAXS demonstrated the enzyme is monomeric in solution. Chemical denaturation monitored by ITFE and far-UV CD yielded Delta G(H2O) values of 9.6 and 9.1 kcal/mol, respectively, showing that the enzyme has intermediate stability when compared with other Bacillus beta-1,3-1,4-glucanases. The crystal structure shows the anti-parallel jelly-roll beta-sheet conserved in all GH16 beta-1,3-1,4-glucanases, with the amino acid differences between Bacillus sp. enzymes that are likely determinants of stability being distributed throughout the protein. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
The main aim was to identify the active compound against Rhizoctonia solani produced by the cassava endophyte Paenibacillus sp. IIRAC-30. The compounds produced were extracted with ethyl acetate and purified by Sephadex column prior to analysis by Q-TOF mass spectrometry. A C(15)-lipopeptide with an estimated molecular weight of 1036 Da and homologues were identified. The lipopeptide had a cyclic structure, which was deduced by interpreting the ESI-MS/MS spectra of main protonated homologues containing 15:0 FA, and the amino acid composition was Glu-Leu-Leu-Val-Asp-Leu-Leu. Therefore, the lipopeptides produced by isolate IIRAC-30 was characterized as a surfactin series. Thus, the main mechanism used by Paenibacillus sp. IIRAC-30 to suppress R. solani was elucidated. Furthermore, because lipopeptides active against phytopathogens generally show low toxicity to humans and the environment, the positive findings presented here suggest that the isolate IIRAC-30 could be a possible candidate for biocontrol of R. solani.
Resumo:
The inferior colliculus (IC) is primarily involved in the processing of auditory information, but it is distinguished from other auditory nuclei in the brainstem by its connections with structures of the motor system. Functional evidence relating the IC to motor behavior derives from experiments showing that activation of the IC by electrical stimulation or excitatory amino acid microinjection causes freezing, escape-like behavior, and immobility. However, the nature of this immobility is still unclear. The present study examined the influence of excitatory amino acid-mediated mechanisms in the IC on the catalepsy induced by the dopamine receptor blocker haloperidol administered systemically (1 or 0.5 mg/kg) in rats. Haloperidol-induced catalepsy was challenged with prior intracollicular microinjections of glutamate NMDA receptor antagonists, MK-801 (15 or 30 mmol/0.5 mu l) and AP7 (10 or 20 nmol/0.5 mu l), or of the NMDA receptor agonist N-methyl-D-aspartate (NMDA, 20 or 30 nmol/0.5 mu l). The results showed that intracollicular microinjection of MK-801 and AP7 previous to systemic injections of haloperidol significantly attenuated the catalepsy, as indicated by a reduced latency to step down from a horizontal bar. Accordingly, intracollicular microinjection of NMDA increased the latency to step down the bar. These findings suggest that glutamate-mediated mechanisms in the neural circuits at the IC level influence haloperidol-induced catalepsy and participate in the regulation of motor activity. (C) 2010 Published by Elsevier B.V.
Resumo:
The cellular mechanisms coupling mechanical loading with bone remodeling remain unclear. In the CNS, the excitatory amino acid glutamate (Glu) serves as a potent neurotransmitter exerting its effects via various membrane Glu receptors (GluR). Nerves containing Glu exist close to bone cells expressing functional GluRs. Demonstration of a mechanically sensitive glutamate/aspartate transporter protein and the ability of glutamate to stimulate bone resorption in vitro suggest a role for glutamate linking mechanical load and bone remodeling. We used immunohistochemical techniques to identify the expression of N-methyl-D-aspartate acid (NMDA) and non-NMDA (AMPA or kainate) ionotropic GluR subunits on bone cells in vivo. In bone sections from young adult rats, osteoclasts expressed numerous GluR subunits including AMPA (GluR2/3 and GluR4), kainic acid (GluR567) and NMDA (NMDAR2A, NMDAR2B and NMDAR2C) receptor subtypes. Bone lining cells demonstrated immunoexpression for NMDAR2A, NMDAR2B, NMDAR2C, GluR567, GluR23, GuR2 and GluR4 subunits. Immunoexpression was not evident on osteocytes, chondrocytes or vascular channels. To investigate the effects of mechanical loading on GluR expression, we used a Materials Testing System (MTS) to apply 10 N sinusoidal axial compressive loads percutaneously to the right limbs (radius/ulna, tibia/fibula) of rats. Each limb underwent 300-load cycles/day (cycle rate, 1 Hz) for 4 consecutive days. Contralateral, non-loaded limbs served as controls. Mechanically loaded limbs revealed a load-induced loss of immunoexpression for GluR2/3, GluR4, GluR567 and NMDAR2A on osteoclasts and NMDAR2A, NMDAR2B, GluR2/3 and GluR4 on bone lining cells. Both neonatal rabbit and rat osteoclasts were cultured on bone slices to investigate the effect of the NMDA receptor antagonist, MK801, and the AMPA/kainic acid receptor antagonist, NBQX, on osteoclast resorptive activity in vitro. The inhibition of resorptive function seen suggested that both NMDAR and kainic acid receptor function are required for normal osteoclast function. While the exact role of ionotropic GluRs in skeletal tissue remains unclear, the modulation of GluR subunit expression by mechanical loading lends further support for participation of Glu as a mechanical loading effector. These ionotropic receptors appear to be functionally relevant to normal osteoclast resorptive activity. (C) 2005 Elsevier Inc. All rights reserved.
Resumo:
We showed in 1988 that there are two strains of Chlamydia psittaci which infect the koala (Phascolarctos cinereus). In order to further investigate the role of these chlamydial strains in pathogenesis, we have attempted to identify genes of koala type I strain chlamydial which are involved in the immunogenic response, Transformation of Escherichia coli with a plasmid containing a 6.3-kb fragment (pKOC-10) of C. psittaci DNA caused the appearance of a specific chlamydial lipopolysaccharide (LPS) epitope on the host strain. The smallest DNA fragment capable of inducing the expression of chlamydial LPS was an Xbal fragment, 2.4 kb in size (pKOC-5). DNA sequence analysis of the complete fragment revealed regions of high identity, at the amino acid level, to the gseA genes of C. pneomoniae, C. psittaci 6BC and C. trachomatis, and the kdtA gene of E. coli which code for transferases catalysing the addition of 3-deoxy-D-manno-octulosonic acid (Kdo) residues to lipid A. Two open reading frames (ORFs) of 1,314 and 501 nucleotides in size, within the 2.4-kb fragment, were evident, and mRNA species corresponding to these ORFs were detected by Northern analysis. Both ORF1 and ORF2 are required for the appearance of chlamydia-specific LPS on the surface of recombinant E. coli.
Resumo:
Eukaryotic translation initiation factor 5A (eIF5A) has a unique character: the presence of an unusual amino acid, hypusine, which is formed by post-translational modifications. Even before the identification of hypusination in eIF5A, the correlation between hypusine formation and protein synthesis, shifting cell proliferation rates, had already been observed. Embryogenesis is a complex process in which cellular proliferation and differentiation are intense. In spite of the fact that many studies have described possible functions for eIF5A, its precise role is under investigation, and to date nothing has been reported about its participation in embryonic development. In this study we show that eIF5A is expressed at all mouse embryonic post-implantation stages with increase in eIF5A mRNA and protein expression levels between embryonic days E10.5 and E13.5. Immunohistochemistry revealed the ubiquitous presence of eIF5A in embryonic tissues and organs at E13.5 day. Interestingly, stronger immunoreactivity to eIF5A was observed in the stomodeum, liver, ectoderm, heart, and eye, and the central nervous system; regions which are known to undergo active differentiation at this stage, suggesting a role of eIF5A in differentiation events. Expression analyses of MyoD, a myogenic transcription factor, revealed a significantly higher expression from day E12.5 on, both at the mRNA and the protein levels suggesting a possible correlation to eIF5A. Accordingly, we next evidenced that inhibiting eIF5A hypusination in mouse myoblast C2C12 cells impairs their differentiation into myotubes and decreases MyoD transcript levels. Those results point to a new functional role for eIF5A, relating it to embryogenesis, development, and cell differentiation. J. Cell. Physiol. 225: 500-505, 2010. (C) 2010 Wiley-Liss, Inc.
Resumo:
The transition from marine/brackish waters to freshwater habitats constitutes a severe osmotic and ionic challenge, and successful invasion has demanded the selection of morphological, physiological, biochemical and behavioral adaptations. We evaluated short-term (1 to 12 h exposure) and long-term (5 d acclimation), anisosmotic extracellular (osmolality, [Na(+), Cl(-)]) and long-term isosmotic intracellular osmoregulatory capability in Palaemon northropi, a neotropical intertidal shrimp. F northropi survives well and osmo- and ionoregulates strongly during short- and long-term exposure to 5-45 parts per thousand salinity, consistent with its rocky tide pool habitat subject to cyclic salinity fluctuations, Muscle total free amino acid (FAA) concentrations decreased by 63% in shrimp acclimated to 5%. salinity, revealing a role in hypoosmotic cell volume regulation; this decrease is mainly a consequence of diminished glycine, arginine and proline. Total FAA contributed 31% to muscle intracellular osmolality at 20 parts per thousand, an isosmotic salinity, and decreased to 13% after acclimation to 5 parts per thousand. Gill and nerve tissue FAA concentrations remained unaltered. These tissue-specific responses reflect efficient anisosmotic and anisoionic extracellular regulatory mechanisms, and reveal the dependence of muscle tissue on intracellular osmotic effectors. FAA concentration is higher in P. northropi than in diadromous and hololimnetic palaemonids, confirming muscle FAA concentration as a good parameter to evaluate the degree of adaptation to dilute media. The osmoregulatory capability of P. northropi may reflect the potential physiological capacity of ancestral marine palaemonids to penetrate into dilute media, and reveals the importance of evaluating osmoregulatory processes in endeavors to comprehend the invasion of dilute media by ancestral marine crustaceans.
Resumo:
It has been demonstrated that glutamine, a conditionally essential amino acid, improves nitrogen balance, acts as a stimulant of protein synthesis, and decreases proteolysis in myopathic children. In contrast, other studies have shown no beneficial effect of glutamine supplementation on burn victims or critically ill patients. Nonetheless, we hypothesized that glutamine supplementation would increase the fractional protein synthesis rate (FSR) in the jejunal mucosa of malnourished male Wistar rats. Thus, the objective of the present study was to test the effect of daily oral glutamine supplementation (0.42 g kg(-1) d(-1) for 14 days) on the FSR of the jejunal mucosa of healthy and malnourished rats. A 4-hour kinetic study with L-[1-(13)C]leucine was subsequently performed, and jejunal biopsies were obtained 1.5 cm from the Treitz angle and analyzed. Malnourished rats showed a 25% weight loss and increased urinary nitrogen excretion. Plasma amino acid concentration did not differ between groups. (13)C enrichment in plasma and jejunal cells was higher in the malnourished groups than in the healthy group. The FSR (percent per hour) was similar for the control and experimental groups (P > .05), with a mean range of 220%/h to 27%/h. Oral glutamine supplementation alone did not induce higher protein incorporation by the jejunal mucosa in malnourished rats, regardless of total food intake or the presence or absence of glutamine supplementation. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
Electrical or chemical stimulation of the dorsal periaqueductal gray matter (DPAG) evokes escape, a defensive behavior that has been related to panic attacks. Injection of 5-HT(1A) or 5-HT(2A) receptor agonists into this midbrain area inhibits this response. It has been proposed that the impairment of 5-HT mechanisms controlling escape at the level of the DPAG may underlie the susceptibility to panic attacks that characterizes the panic disorder. In this study we evaluated the effects of the pharmacological manipulation of the dorsal raphe nucleus (DRN), which are the main source of 5-HT input to the DPAG, on the escape response evoked in rats by the intra-DPAG injection of the nitric oxide donor SIN-1. The results showed that DRN administration of the 5-HT(1A) receptor agonist 8-OH-DPAT which inhibits the activity of 5-HT neurons favored the expression of escape induced by SIN-1. Intra-DRN injection of the excitatory amino acid kainic acid or the 5-HT(1A) receptor antagonist WAY-100635 did not change escape expression. However, both compounds fully blocked the escape reaction generated by intra-DPAG injection of the excitatory amino acid D,L-homocysteic acid (DLH). Overall, the results indicate that 5-HT neurons in the DRN exert a bidirectional control upon escape behavior generated by the DPAG. Taking into account the effect of WAY-100635 on DLH-induced escape, they also strengthen the view that DRN 5-HT(1A) autoreceptors are under tonic inhibitory influence by 5-HT. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The low rates of nonsynonymous evolution observed in natural rabies virus (RABV) isolates are suggested to have arisen in association with the structural and functional constraints operating on the virus protein and the infection strategies employed by RABV within infected hosts to avoid strong selection by the immune response. In order to investigate the relationship between the genetic characteristics of RABV populations within hosts and the virus evolution, the present study examined the genetic heterogeneities of RABV populations within naturally infected dogs and foxes in Brazil, as well as those of bat RABV populations that were passaged once in suckling mice. Sequence analyses of complete RABV glycoprotein (G) genes showed that RABV populations within infected hosts were genetically highly homogeneous whether they were infected naturally or experimentally (nucleotide diversities of 0-0.95 x 10(-3)). In addition, amino acid mutations were randomly distributed over the entire region of the G protein, and the nonsynonymous/synonymous rate ratios (d(N)/d(S)) for the G protein gene were less than 1. These findings suggest that the low genetic diversities of RABV populations within hosts reflect the stabilizing selection operating on the virus, the infection strategies of the virus, and eventually, the evolutionary patterns of the virus. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The cDNA sequence for insulin-like growth factor 2 (IGF-2) was determined from the liver of the marsupial brushtail possum (Trichosurus vulpecula) using reverse transcription followed by polymerase chain reaction (RT-PCR) with gene-specific primers. The 359 bp of possum sequence encompassed the mature peptide, 27 bp of the signal peptide, and 125 bp of the E-peptide. Alignment of the deduced amino acid sequence with those from other species indicated that the mature peptide was 71 amino acids in length, 4 amino acids longer than most other mammals. At both the nucleotide and amino acid levels there was a high degree of sequence identity with IGF-2 from other mammalian and nonmammalian species. Amino acid identity ranged from 94.4% with a variant form of human IGF-2 to 80.3% with zebrafinch IGF-2. Northern analysis revealed that radiolabeled possum IGF-2, cDNA hybridized to multiple transcripts in the liver of both adult possums and 150-day-old pouch young and that the overall level of expression was greater in pouch young. Semiquantitative RT-PCR with total RNA from liver samples of pouch young aged 12 to 150 days postpartum and adults confirmed that IGF-2 gene expression was two to three times more abundant in pouch young than in adults but there was no significant change in the level of expression during pouch life. Unlike other mammalian species, in which there is a decline in levels of liver IGF-2 gene expression around the time of birth, levels in the marsupial brushtail possum remain elevated for at least 150 days after birth. This suggests that the decline in liver IGF-2 expression in marsupials and eutherians occurs at a similar stage of development and may reflect a role for this growth factor during the postnatal growth and development of the marsupial, (C) 2001 Academic Press.
Resumo:
The aim was to examine the functional importance in the norepinephrine transporter (NET) of (i) the phenylalanine residue at position 531 in transmembrane domain (TMD) 11 by mutating it to tyrosine in the rat (rF531Y) and human (hF531Y) NETs and (ii) the highly conserved tyrosine residues at positions 249 in TMD 4 of human NET (hNET) (mutated to alanine: hY249A) and 271 in TMD 5, by mutating to alanine (hY271A), phenylalanine (hY271F) and histidine (hY271H). The effects of the mutations on NET function were for uptake of the substrates, examined by expressing the mutant and wildtype NETs in COS-7 cells and measuring the K-m and V-max for uptake of the substrates, [H-3]norepinephrine, [H-3]MPP+ and [H-3]dopamine, the K-D and B-max for [H-3]nisoxetine binding and the K-i of the inhibitors, nisoxetine, desipramine and cocaine, for inhibition of [H-3]norepinephrine uptake. The K-m values of the substrates were lower for the mutants at amino acid 271 than hNET and unaffected for the other mutants, and each mutant had a significantly lower than NET for substrate uptake. The mutations at position 271 caused an increase in the K-i or K-D values of nisoxetine, desipramine and cocaine, but there were no effects for the other mutations. Hence, the 271 tyrosine residue in TMD 5 is an important determinant of NET function, with the mutants showing an increase in the apparent affinities of substrates and a decrease in the apparent affinities of inhibitors, but the 249 tyrosine and 531 phenylalanine residues do not have a major role in determining NET function. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
The 12 cysteine residues in the flavivirus NS1 protein are strictly conserved, suggesting that they form disulfide bonds that are critical for folding the protein into a functional structure. In this study, we examined the intramolecular disulfide bond arrangement of NS1 of Murray Valley encephalitis virus and elucidated three of the six cysteine-pairing arrangements. Disulfide linkages were identified by separating tryptic-digested NS1 by reverse-phase high pressure liquid chromatography and analysing the resulting peptide peaks by protein sequencing, amino acid analysis and/or electrospray mass spectrometry. The pairing arrangements between the six amino-terminal cysteines were identified as follows: Cys(4)-Cys(15), Cys(55)-Cys(143) and Cys(179)-Cys(223). Although the pairing arrangements between the six carboxyterminal cysteines were not determined, we were able to eliminate several cysteine-pairing combinations. Furthermore, we demonstrated that all three putative N-linked glycosylation sites of NS1 are utilized and that the Asn(207) glycosylation site contains a mannose-rich glycan.
Resumo:
There have been no reports of DNA sequences of hepatitis B virus (HBV) strains from Australian Aborigines, although the hepatitis B surface antigen (HBsAg) was discovered among them. To investigate the characteristics of DNA sequences of HBV strains from Australian Aborigines, the complete nucleotide sequences of HBV strains were determined and subjected to molecular evolutionary analysis. Serum samples positive for HBsAg were collected from five Australian Aborigines. Phylogenetic analysis of the five complete nucleotide sequences compared with DNA sequences of 54 global HBV isolates from international databases revealed that three of the five were classified into genotype D and were most closely related in terms of evolutionary distance to a strain isolated from a healthy blood donor in Papua New Guinea. Two of the five were classified into a novel variant genotype C, which has not been reported previously, and were closely related to a strain isolated from Polynesians, particularly in the X and Core genes. These two strains of variant genotype C differed from known genotype C strains by 5.9-7.4% over the complete nucleotide sequence and 4.0-5.6 % in the small-S gene, and had residues Arg(122), Thr(127) and Lys(160) characteristic of serotype ayw3, which have not been reported previously in genotype C. In conclusion, this is the first report of the characteristics of complete nucleotide sequences of HBV from Australian Aborigines. These results contribute to the investigation of the worldwide spread of HBV, the relationship between serotype and genotype and the ancient common origin of Australian Aborigines.