975 resultados para Clique vertex irreducible graphs
Resumo:
In this paper we propose a prototype size selection method for a set of sample graphs. Our first contribution is to show how approximate set coding can be extended from the vector to graph domain. With this framework to hand we show how prototype selection can be posed as optimizing the mutual information between two partitioned sets of sample graphs. We show how the resulting method can be used for prototype graph size selection. In our experiments, we apply our method to a real-world dataset and investigate its performance on prototype size selection tasks. © 2012 Springer-Verlag Berlin Heidelberg.
Resumo:
2000 Mathematics Subject Classification: 05C55.
Resumo:
2000 Mathematics Subject Classification: 05C55.
Resumo:
2010 Mathematics Subject Classification: 05C38, 05C45.
Resumo:
Graph-structured databases are widely prevalent, and the problem of effective search and retrieval from such graphs has been receiving much attention recently. For example, the Web can be naturally viewed as a graph. Likewise, a relational database can be viewed as a graph where tuples are modeled as vertices connected via foreign-key relationships. Keyword search querying has emerged as one of the most effective paradigms for information discovery, especially over HTML documents in the World Wide Web. One of the key advantages of keyword search querying is its simplicity—users do not have to learn a complex query language, and can issue queries without any prior knowledge about the structure of the underlying data. The purpose of this dissertation was to develop techniques for user-friendly, high quality and efficient searching of graph structured databases. Several ranked search methods on data graphs have been studied in the recent years. Given a top-k keyword search query on a graph and some ranking criteria, a keyword proximity search finds the top-k answers where each answer is a substructure of the graph containing all query keywords, which illustrates the relationship between the keyword present in the graph. We applied keyword proximity search on the web and the page graph of web documents to find top-k answers that satisfy user’s information need and increase user satisfaction. Another effective ranking mechanism applied on data graphs is the authority flow based ranking mechanism. Given a top- k keyword search query on a graph, an authority-flow based search finds the top-k answers where each answer is a node in the graph ranked according to its relevance and importance to the query. We developed techniques that improved the authority flow based search on data graphs by creating a framework to explain and reformulate them taking in to consideration user preferences and feedback. We also applied the proposed graph search techniques for Information Discovery over biological databases. Our algorithms were experimentally evaluated for performance and quality. The quality of our method was compared to current approaches by using user surveys.
Resumo:
Centrality is in fact one of the fundamental notions in graph theory which has established its close connection with various other areas like Social networks, Flow networks, Facility location problems etc. Even though a plethora of centrality measures have been introduced from time to time, according to the changing demands, the term is not well defined and we can only give some common qualities that a centrality measure is expected to have. Nodes with high centrality scores are often more likely to be very powerful, indispensable, influential, easy propagators of information, significant in maintaining the cohesion of the group and are easily susceptible to anything that disseminate in the network.
Resumo:
Hebb proposed that synapses between neurons that fire synchronously are strengthened, forming cell assemblies and phase sequences. The former, on a shorter scale, are ensembles of synchronized cells that function transiently as a closed processing system; the latter, on a larger scale, correspond to the sequential activation of cell assemblies able to represent percepts and behaviors. Nowadays, the recording of large neuronal populations allows for the detection of multiple cell assemblies. Within Hebb's theory, the next logical step is the analysis of phase sequences. Here we detected phase sequences as consecutive assembly activation patterns, and then analyzed their graph attributes in relation to behavior. We investigated action potentials recorded from the adult rat hippocampus and neocortex before, during and after novel object exploration (experimental periods). Within assembly graphs, each assembly corresponded to a node, and each edge corresponded to the temporal sequence of consecutive node activations. The sum of all assembly activations was proportional to firing rates, but the activity of individual assemblies was not. Assembly repertoire was stable across experimental periods, suggesting that novel experience does not create new assemblies in the adult rat. Assembly graph attributes, on the other hand, varied significantly across behavioral states and experimental periods, and were separable enough to correctly classify experimental periods (Naïve Bayes classifier; maximum AUROCs ranging from 0.55 to 0.99) and behavioral states (waking, slow wave sleep, and rapid eye movement sleep; maximum AUROCs ranging from 0.64 to 0.98). Our findings agree with Hebb's view that assemblies correspond to primitive building blocks of representation, nearly unchanged in the adult, while phase sequences are labile across behavioral states and change after novel experience. The results are compatible with a role for phase sequences in behavior and cognition.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-08
Resumo:
A number of research groups are now developing and using finite volume (FV) methods for computational solid mechanics (CSM). These methods are proving to be equivalent and in some cases superior to their finite element (FE) counterparts. In this paper we will describe a vertex-based FV method with arbitrarily structured meshes, for modelling the elasto-plastic deformation of solid materials undergoing small strains in complex geometries. Comparisons with rational FE methods will be given.
Resumo:
Abstract not available
Resumo:
This paper is a self-contained development of an invariant of graphs embedded in three-dimensional Euclidean space using the Jones polynomial and skein theory. Some examples of the invariant are computed. An unlinked embedded graph is one that contains only trivial knots or links. Examples show that the invariant is sufficiently powerful to distinguish some different unlinked embeddings of the same graph.
Resumo:
In today’s big data world, data is being produced in massive volumes, at great velocity and from a variety of different sources such as mobile devices, sensors, a plethora of small devices hooked to the internet (Internet of Things), social networks, communication networks and many others. Interactive querying and large-scale analytics are being increasingly used to derive value out of this big data. A large portion of this data is being stored and processed in the Cloud due the several advantages provided by the Cloud such as scalability, elasticity, availability, low cost of ownership and the overall economies of scale. There is thus, a growing need for large-scale cloud-based data management systems that can support real-time ingest, storage and processing of large volumes of heterogeneous data. However, in the pay-as-you-go Cloud environment, the cost of analytics can grow linearly with the time and resources required. Reducing the cost of data analytics in the Cloud thus remains a primary challenge. In my dissertation research, I have focused on building efficient and cost-effective cloud-based data management systems for different application domains that are predominant in cloud computing environments. In the first part of my dissertation, I address the problem of reducing the cost of transactional workloads on relational databases to support database-as-a-service in the Cloud. The primary challenges in supporting such workloads include choosing how to partition the data across a large number of machines, minimizing the number of distributed transactions, providing high data availability, and tolerating failures gracefully. I have designed, built and evaluated SWORD, an end-to-end scalable online transaction processing system, that utilizes workload-aware data placement and replication to minimize the number of distributed transactions that incorporates a suite of novel techniques to significantly reduce the overheads incurred both during the initial placement of data, and during query execution at runtime. In the second part of my dissertation, I focus on sampling-based progressive analytics as a means to reduce the cost of data analytics in the relational domain. Sampling has been traditionally used by data scientists to get progressive answers to complex analytical tasks over large volumes of data. Typically, this involves manually extracting samples of increasing data size (progressive samples) for exploratory querying. This provides the data scientists with user control, repeatable semantics, and result provenance. However, such solutions result in tedious workflows that preclude the reuse of work across samples. On the other hand, existing approximate query processing systems report early results, but do not offer the above benefits for complex ad-hoc queries. I propose a new progressive data-parallel computation framework, NOW!, that provides support for progressive analytics over big data. In particular, NOW! enables progressive relational (SQL) query support in the Cloud using unique progress semantics that allow efficient and deterministic query processing over samples providing meaningful early results and provenance to data scientists. NOW! enables the provision of early results using significantly fewer resources thereby enabling a substantial reduction in the cost incurred during such analytics. Finally, I propose NSCALE, a system for efficient and cost-effective complex analytics on large-scale graph-structured data in the Cloud. The system is based on the key observation that a wide range of complex analysis tasks over graph data require processing and reasoning about a large number of multi-hop neighborhoods or subgraphs in the graph; examples include ego network analysis, motif counting in biological networks, finding social circles in social networks, personalized recommendations, link prediction, etc. These tasks are not well served by existing vertex-centric graph processing frameworks whose computation and execution models limit the user program to directly access the state of a single vertex, resulting in high execution overheads. Further, the lack of support for extracting the relevant portions of the graph that are of interest to an analysis task and loading it onto distributed memory leads to poor scalability. NSCALE allows users to write programs at the level of neighborhoods or subgraphs rather than at the level of vertices, and to declaratively specify the subgraphs of interest. It enables the efficient distributed execution of these neighborhood-centric complex analysis tasks over largescale graphs, while minimizing resource consumption and communication cost, thereby substantially reducing the overall cost of graph data analytics in the Cloud. The results of our extensive experimental evaluation of these prototypes with several real-world data sets and applications validate the effectiveness of our techniques which provide orders-of-magnitude reductions in the overheads of distributed data querying and analysis in the Cloud.
Resumo:
In today's fast-paced and interconnected digital world, the data generated by an increasing number of applications is being modeled as dynamic graphs. The graph structure encodes relationships among data items, while the structural changes to the graphs as well as the continuous stream of information produced by the entities in these graphs make them dynamic in nature. Examples include social networks where users post status updates, images, videos, etc.; phone call networks where nodes may send text messages or place phone calls; road traffic networks where the traffic behavior of the road segments changes constantly, and so on. There is a tremendous value in storing, managing, and analyzing such dynamic graphs and deriving meaningful insights in real-time. However, a majority of the work in graph analytics assumes a static setting, and there is a lack of systematic study of the various dynamic scenarios, the complexity they impose on the analysis tasks, and the challenges in building efficient systems that can support such tasks at a large scale. In this dissertation, I design a unified streaming graph data management framework, and develop prototype systems to support increasingly complex tasks on dynamic graphs. In the first part, I focus on the management and querying of distributed graph data. I develop a hybrid replication policy that monitors the read-write frequencies of the nodes to decide dynamically what data to replicate, and whether to do eager or lazy replication in order to minimize network communication and support low-latency querying. In the second part, I study parallel execution of continuous neighborhood-driven aggregates, where each node aggregates the information generated in its neighborhoods. I build my system around the notion of an aggregation overlay graph, a pre-compiled data structure that enables sharing of partial aggregates across different queries, and also allows partial pre-computation of the aggregates to minimize the query latencies and increase throughput. Finally, I extend the framework to support continuous detection and analysis of activity-based subgraphs, where subgraphs could be specified using both graph structure as well as activity conditions on the nodes. The query specification tasks in my system are expressed using a set of active structural primitives, which allows the query evaluator to use a set of novel optimization techniques, thereby achieving high throughput. Overall, in this dissertation, I define and investigate a set of novel tasks on dynamic graphs, design scalable optimization techniques, build prototype systems, and show the effectiveness of the proposed techniques through extensive evaluation using large-scale real and synthetic datasets.
Resumo:
This thesis presents approximation algorithms for some NP-Hard combinatorial optimization problems on graphs and networks; in particular, we study problems related to Network Design. Under the widely-believed complexity-theoretic assumption that P is not equal to NP, there are no efficient (i.e., polynomial-time) algorithms that solve these problems exactly. Hence, if one desires efficient algorithms for such problems, it is necessary to consider approximate solutions: An approximation algorithm for an NP-Hard problem is a polynomial time algorithm which, for any instance of the problem, finds a solution whose value is guaranteed to be within a multiplicative factor of the value of an optimal solution to that instance. We attempt to design algorithms for which this factor, referred to as the approximation ratio of the algorithm, is as small as possible. The field of Network Design comprises a large class of problems that deal with constructing networks of low cost and/or high capacity, routing data through existing networks, and many related issues. In this thesis, we focus chiefly on designing fault-tolerant networks. Two vertices u,v in a network are said to be k-edge-connected if deleting any set of k − 1 edges leaves u and v connected; similarly, they are k-vertex connected if deleting any set of k − 1 other vertices or edges leaves u and v connected. We focus on building networks that are highly connected, meaning that even if a small number of edges and nodes fail, the remaining nodes will still be able to communicate. A brief description of some of our results is given below. We study the problem of building 2-vertex-connected networks that are large and have low cost. Given an n-node graph with costs on its edges and any integer k, we give an O(log n log k) approximation for the problem of finding a minimum-cost 2-vertex-connected subgraph containing at least k nodes. We also give an algorithm of similar approximation ratio for maximizing the number of nodes in a 2-vertex-connected subgraph subject to a budget constraint on the total cost of its edges. Our algorithms are based on a pruning process that, given a 2-vertex-connected graph, finds a 2-vertex-connected subgraph of any desired size and of density comparable to the input graph, where the density of a graph is the ratio of its cost to the number of vertices it contains. This pruning algorithm is simple and efficient, and is likely to find additional applications. Recent breakthroughs on vertex-connectivity have made use of algorithms for element-connectivity problems. We develop an algorithm that, given a graph with some vertices marked as terminals, significantly simplifies the graph while preserving the pairwise element-connectivity of all terminals; in fact, the resulting graph is bipartite. We believe that our simplification/reduction algorithm will be a useful tool in many settings. We illustrate its applicability by giving algorithms to find many trees that each span a given terminal set, while being disjoint on edges and non-terminal vertices; such problems have applications in VLSI design and other areas. We also use this reduction algorithm to analyze simple algorithms for single-sink network design problems with high vertex-connectivity requirements; we give an O(k log n)-approximation for the problem of k-connecting a given set of terminals to a common sink. We study similar problems in which different types of links, of varying capacities and costs, can be used to connect nodes; assuming there are economies of scale, we give algorithms to construct low-cost networks with sufficient capacity or bandwidth to simultaneously support flow from each terminal to the common sink along many vertex-disjoint paths. We further investigate capacitated network design, where edges may have arbitrary costs and capacities. Given a connectivity requirement R_uv for each pair of vertices u,v, the goal is to find a low-cost network which, for each uv, can support a flow of R_uv units of traffic between u and v. We study several special cases of this problem, giving both algorithmic and hardness results. In addition to Network Design, we consider certain Traveling Salesperson-like problems, where the goal is to find short walks that visit many distinct vertices. We give a (2 + epsilon)-approximation for Orienteering in undirected graphs, achieving the best known approximation ratio, and the first approximation algorithm for Orienteering in directed graphs. We also give improved algorithms for Orienteering with time windows, in which vertices must be visited between specified release times and deadlines, and other related problems. These problems are motivated by applications in the fields of vehicle routing, delivery and transportation of goods, and robot path planning.
Resumo:
Edge-labeled graphs have proliferated rapidly over the last decade due to the increased popularity of social networks and the Semantic Web. In social networks, relationships between people are represented by edges and each edge is labeled with a semantic annotation. Hence, a huge single graph can express many different relationships between entities. The Semantic Web represents each single fragment of knowledge as a triple (subject, predicate, object), which is conceptually identical to an edge from subject to object labeled with predicates. A set of triples constitutes an edge-labeled graph on which knowledge inference is performed. Subgraph matching has been extensively used as a query language for patterns in the context of edge-labeled graphs. For example, in social networks, users can specify a subgraph matching query to find all people that have certain neighborhood relationships. Heavily used fragments of the SPARQL query language for the Semantic Web and graph queries of other graph DBMS can also be viewed as subgraph matching over large graphs. Though subgraph matching has been extensively studied as a query paradigm in the Semantic Web and in social networks, a user can get a large number of answers in response to a query. These answers can be shown to the user in accordance with an importance ranking. In this thesis proposal, we present four different scoring models along with scalable algorithms to find the top-k answers via a suite of intelligent pruning techniques. The suggested models consist of a practically important subset of the SPARQL query language augmented with some additional useful features. The first model called Substitution Importance Query (SIQ) identifies the top-k answers whose scores are calculated from matched vertices' properties in each answer in accordance with a user-specified notion of importance. The second model called Vertex Importance Query (VIQ) identifies important vertices in accordance with a user-defined scoring method that builds on top of various subgraphs articulated by the user. Approximate Importance Query (AIQ), our third model, allows partial and inexact matchings and returns top-k of them with a user-specified approximation terms and scoring functions. In the fourth model called Probabilistic Importance Query (PIQ), a query consists of several sub-blocks: one mandatory block that must be mapped and other blocks that can be opportunistically mapped. The probability is calculated from various aspects of answers such as the number of mapped blocks, vertices' properties in each block and so on and the most top-k probable answers are returned. An important distinguishing feature of our work is that we allow the user a huge amount of freedom in specifying: (i) what pattern and approximation he considers important, (ii) how to score answers - irrespective of whether they are vertices or substitution, and (iii) how to combine and aggregate scores generated by multiple patterns and/or multiple substitutions. Because so much power is given to the user, indexing is more challenging than in situations where additional restrictions are imposed on the queries the user can ask. The proposed algorithms for the first model can also be used for answering SPARQL queries with ORDER BY and LIMIT, and the method for the second model also works for SPARQL queries with GROUP BY, ORDER BY and LIMIT. We test our algorithms on multiple real-world graph databases, showing that our algorithms are far more efficient than popular triple stores.