New Upper Bound for the Edge Folkman Number Fe(3,5;13)
Data(s) |
21/07/2016
21/07/2016
2008
|
---|---|
Resumo |
2000 Mathematics Subject Classification: 05C55. For a given graph G let V(G) and E(G) denote the vertex and the edge set of G respevtively. The symbol G e → (a1, …, ar) means that in every r-coloring of E(G) there exists a monochromatic ai-clique of color i for some i ∈ {1,…,r}. The edge Folkman numbers are defined by the equality Fe(a1, …, ar; q) = min{|V(G)| : G e → (a1, …, ar; q) and cl(G) < q}. In this paper we prove a new upper bound on the edge Folkman number Fe(3,5;13), namely Fe(3,5;13) ≤ 21. This improves the bound Fe(3,5;13) ≤ 24, proved by Kolev and Nenov. Supported by the Scientific Research Fund of the St. Kl. Ohridski Sofia University under contract 90-2008. |
Identificador |
Serdica Mathematical Journal, Vol. 34, No 4, (2008), 783p-790p 1310-6600 |
Idioma(s) |
en |
Publicador |
Institute of Mathematics and Informatics Bulgarian Academy of Sciences |
Palavras-Chave | #Folkman Graph #Folkman Number |
Tipo |
Article |