965 resultados para Chip


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A long-standing yet to be accomplished task in understanding behavior is to dissect the function of each gene involved in the development and function of a neuron. The C. elegans ALA neuron was chosen in this study for its known function in sleep, an ancient but less understood animal behavior. Single-cell transcriptome profiling identified 8,133 protein-coding genes in the ALA neuron, of which 57 are neuropeptide-coding genes. The most enriched genes are also neuropeptides. In combination with gain-of-function and loss-of-function assays, here I showed that the ALA-enriched FMRFamide neuropeptides, FLP-7, FLP-13, and FLP-24, are sufficient and necessary for inducing C. elegans sleep. These neuropeptides act as neuromodulators through GPCRs, NPR-7, and NPR-22. Further investigation in zebrafish indicates that FMRFamide neuropeptides are sleep-promoting molecules in animals. To correlate the behavioral outputs with genomic context, I constructed a gene regulatory network of the relevant genes controlling C. elegans sleep behavior through EGFR signaling in the ALA neuron. First, I identified an ALA cell-specific motif to conduct a genome-wide search for possible ALA-expressed genes. I then filtered out non ALA-expressed genes by comparing the motif-search genes with ALA transcriptomes from single-cell profiling. In corroborating with ChIP-seq data from modENCODE, I sorted out direct interaction of ALA-expressed transcription factors and differentiation genes in the EGFR sleep regulation pathway. This approach provides a network reference for the molecular regulation of C. elegans sleep behavior, and serves as an entry point for the understanding of functional genomics in animal behaviors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis describes the development of low-noise heterodyne receivers at THz frequencies for submillimeter astronomy using Nb-based superconductor-insulator-superconductor (SIS) tunneling junctions. The mixers utilize a quasi-optical configuration which consists of a planar twin-slot antenna and antisymmetrically-fed two-junctions on an antireflection-coated silicon hyperhemispherical lens. On-chip integrated tuning circuits, in the form of microstrip lines, are used to obtain maximum coupling efficiency in the designed frequency band. To reduce the rf losses in the integrated tuning circuits above the superconducting Nb gap frequency (~ 700 GHz), normal-metal Al is used to replace Nb as the tuning circuits.

To account the rf losses in the micros trip lines, we calculated the surface impedance of the AI films using the nonlocal anomalous skin effect for finite thickness films. Nb films were calculated using the Mattis-Bardeen theory in the extreme anomalous limit. Our calculations show that the losses of the Al and Nb microstrip lines are about equal at 830 GHz. For Al-wiring and Nb-wiring mixers both optimized at 1050 GHz, the RF coupling efficiency of Al-wiring mixer is higher than that of Nb-wiring one by almost 50%. We have designed both Nb-wiring and Al-wiring mixers below and above the gap frequency.

A Fourier transform spectrometer (FTS) has been constructed especially for the study of the frequency response of SIS receivers. This FTS features large aperture size (10 inch) and high frequency resolution (114 MHz). The FTS spectra, obtained using the SIS receivers as direct detectors on the FTS, agree quite well with our theoretical simulations. We have also, for the first time, measured the FTS heterodyne response of an SIS mixer at sufficiently high resolution to resolve the LO and the sidebands. Heterodyne measurements of our SIS receivers with Nb-wiring or Al-wiring have yielded results which arc among the best reported to date for broadband heterodyne receivers. The Nb-wiring mixers, covering 400 - 850 GHz band with four separate fixed-tuned mixers, have uncorrected DSB receiver noise temperature around 5hv/kb to 700 GHz, and better than 540 K at 808 GHz. An Al-wiring mixer designed for 1050 GHz band has an uncorrected DSB receiver noise temperature 840 K at 1042 GHz and 2.5 K bath temperature. Mixer performance analysis shows that Nb junctions can work well up to twice the gap frequency and the major cause of loss above the gap frequency is the rf losses in the microstrip tuning structures. Further advances in THz SIS mixers may be possible using circuits fabricated with higher-gap superconductors such as NbN. However, this will require high-quality films with low RF surface resistance at THz frequencies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report an experiment of trapping of neutral Rb-87 atoms on a, self-made atomchip. The H-shaped atomchip is made by magnetron sputtering technology, which is different from the atomchip technology of other teams. We collect 3 x 10(6) Rb-87 atoms in the mirror magneto-optical trap (MOT) using the external MOT coils, and 1 X 10(5) Rb-87 atoms are transferred to U-MOT using U-shaped wire in chip and a pair of bias coils.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

原子芯片提供了一个稳定、精确且功能强大的实验平台来制备和操纵中性超冷原子。本文概述了近年来原子芯片的研究发展状况,并介绍了原子芯片上微势阱的设计原理以及几个典型的原子芯片实验,然后讨论了芯片实验中的原子损失、加热和退相干机制,最后对原子芯片可能的发展方向进行了预测。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

With continuing advances in CMOS technology, feature sizes of modern Silicon chip-sets have gone down drastically over the past decade. In addition to desktops and laptop processors, a vast majority of these chips are also being deployed in mobile communication devices like smart-phones and tablets, where multiple radio-frequency integrated circuits (RFICs) must be integrated into one device to cater to a wide variety of applications such as Wi-Fi, Bluetooth, NFC, wireless charging, etc. While a small feature size enables higher integration levels leading to billions of transistors co-existing on a single chip, it also makes these Silicon ICs more susceptible to variations. A part of these variations can be attributed to the manufacturing process itself, particularly due to the stringent dimensional tolerances associated with the lithographic steps in modern processes. Additionally, RF or millimeter-wave communication chip-sets are subject to another type of variation caused by dynamic changes in the operating environment. Another bottleneck in the development of high performance RF/mm-wave Silicon ICs is the lack of accurate analog/high-frequency models in nanometer CMOS processes. This can be primarily attributed to the fact that most cutting edge processes are geared towards digital system implementation and as such there is little model-to-hardware correlation at RF frequencies.

All these issues have significantly degraded yield of high performance mm-wave and RF CMOS systems which often require multiple trial-and-error based Silicon validations, thereby incurring additional production costs. This dissertation proposes a low overhead technique which attempts to counter the detrimental effects of these variations, thereby improving both performance and yield of chips post fabrication in a systematic way. The key idea behind this approach is to dynamically sense the performance of the system, identify when a problem has occurred, and then actuate it back to its desired performance level through an intelligent on-chip optimization algorithm. We term this technique as self-healing drawing inspiration from nature's own way of healing the body against adverse environmental effects. To effectively demonstrate the efficacy of self-healing in CMOS systems, several representative examples are designed, fabricated, and measured against a variety of operating conditions.

We demonstrate a high-power mm-wave segmented power mixer array based transmitter architecture that is capable of generating high-speed and non-constant envelope modulations at higher efficiencies compared to existing conventional designs. We then incorporate several sensors and actuators into the design and demonstrate closed-loop healing against a wide variety of non-ideal operating conditions. We also demonstrate fully-integrated self-healing in the context of another mm-wave power amplifier, where measurements were performed across several chips, showing significant improvements in performance as well as reduced variability in the presence of process variations and load impedance mismatch, as well as catastrophic transistor failure. Finally, on the receiver side, a closed-loop self-healing phase synthesis scheme is demonstrated in conjunction with a wide-band voltage controlled oscillator to generate phase shifter local oscillator (LO) signals for a phased array receiver. The system is shown to heal against non-idealities in the LO signal generation and distribution, significantly reducing phase errors across a wide range of frequencies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We study the behaviour of atoms in a field with both static magnetic field and radio frequency (rf) magnetic field. We calculate the adiabatic potential of atoms numerically beyond the usually rotating wave approximation, and it is pointed that there is a great difference between using these two methods. We find the preconditions when RWA is valid. In the extreme of static field almost parallel to rf field, we reach an analytic formula. Finally, we apply this method to Rb-87 and propose a guide based on an rf field on atom chip.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

利用解析和数值方法计算了Z形磁阱的囚禁势,发现当囚禁中心和芯片表面距离较远时(该距离和Z形线中部导线的一半长度相差不超过一个量级),势阱的深度不能近似表示成偏置磁场By对应的能量,而要减去囚禁中心的势能高度;而增加By进行磁阱压缩到一定值时,势阱深度反而会下降.此外介绍了原子芯片的制作方法,以及利用原子芯片上Z形磁阱囚禁中性87Rb原子的实验装置和实验过程.最终有2×10^6个^87Rb原子被转移到Z形磁阱中.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

本征脸方法是广泛应用于人脸识别的一种图像处理方法,本文将其引入到原子芯片上囚禁的冷原子云吸收成像照片的图像处理中,以减少其中的干涉条纹,增加信噪比。本文首先介绍了吸收成像照片的标准处理方法以及干涉条纹的产生原因,由于参考照片和吸收成像照片中的干涉条纹会发生随机的相对变化,处理后干涉条纹难以消除。和标准的处理方法相比,本征脸方法不是使用1张而是50张参考照片,利用这些照片重构出一张新的参考照片,这张照片比那50张中的任何一张都更近似于吸收成像照片,因此和只使用1张参考照片相比,处理之后的干涉条纹对比度明显降

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Light has long been used for the precise measurement of moving bodies, but the burgeoning field of optomechanics is concerned with the interaction of light and matter in a regime where the typically weak radiation pressure force of light is able to push back on the moving object. This field began with the realization in the late 1960's that the momentum imparted by a recoiling photon on a mirror would place fundamental limits on the smallest measurable displacement of that mirror. This coupling between the frequency of light and the motion of a mechanical object does much more than simply add noise, however. It has been used to cool objects to their quantum ground state, demonstrate electromagnetically-induced-transparency, and modify the damping and spring constant of the resonator. Amazingly, these radiation pressure effects have now been demonstrated in systems ranging 18 orders of magnitude in mass (kg to fg).

In this work we will focus on three diverse experiments in three different optomechanical devices which span the fields of inertial sensors, closed-loop feedback, and nonlinear dynamics. The mechanical elements presented cover 6 orders of magnitude in mass (ng to fg), but they all employ nano-scale photonic crystals to trap light and resonantly enhance the light-matter interaction. In the first experiment we take advantage of the sub-femtometer displacement resolution of our photonic crystals to demonstrate a sensitive chip-scale optical accelerometer with a kHz-frequency mechanical resonator. This sensor has a noise density of approximately 10 micro-g/rt-Hz over a useable bandwidth of approximately 20 kHz and we demonstrate at least 50 dB of linear dynamic sensor range. We also discuss methods to further improve performance of this device by a factor of 10.

In the second experiment, we used a closed-loop measurement and feedback system to damp and cool a room-temperature MHz-frequency mechanical oscillator from a phonon occupation of 6.5 million down to just 66. At the time of the experiment, this represented a world-record result for the laser cooling of a macroscopic mechanical element without the aid of cryogenic pre-cooling. Furthermore, this closed-loop damping yields a high-resolution force sensor with a practical bandwidth of 200 kHZ and the method has applications to other optomechanical sensors.

The final experiment contains results from a GHz-frequency mechanical resonator in a regime where the nonlinearity of the radiation-pressure interaction dominates the system dynamics. In this device we show self-oscillations of the mechanical element that are driven by multi-photon-phonon scattering. Control of the system allows us to initialize the mechanical oscillator into a stable high-amplitude attractor which would otherwise be inaccessible. To provide context, we begin this work by first presenting an intuitive overview of optomechanical systems and then providing an extended discussion of the principles underlying the design and fabrication of our optomechanical devices.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Wide field-of-view (FOV) microscopy is of high importance to biological research and clinical diagnosis where a high-throughput screening of samples is needed. This thesis presents the development of several novel wide FOV imaging technologies and demonstrates their capabilities in longitudinal imaging of living organisms, on the scale of viral plaques to live cells and tissues.

The ePetri Dish is a wide FOV on-chip bright-field microscope. Here we applied an ePetri platform for plaque analysis of murine norovirus 1 (MNV-1). The ePetri offers the ability to dynamically track plaques at the individual cell death event level over a wide FOV of 6 mm × 4 mm at 30 min intervals. A density-based clustering algorithm is used to analyze the spatial-temporal distribution of cell death events to identify plaques at their earliest stages. We also demonstrate the capabilities of the ePetri in viral titer count and dynamically monitoring plaque formation, growth, and the influence of antiviral drugs.

We developed another wide FOV imaging technique, the Talbot microscope, for the fluorescence imaging of live cells. The Talbot microscope takes advantage of the Talbot effect and can generate a focal spot array to scan the fluorescence samples directly on-chip. It has a resolution of 1.2 μm and a FOV of ~13 mm2. We further upgraded the Talbot microscope for the long-term time-lapse fluorescence imaging of live cell cultures, and analyzed the cells’ dynamic response to an anticancer drug.

We present two wide FOV endoscopes for tissue imaging, named the AnCam and the PanCam. The AnCam is based on the contact image sensor (CIS) technology, and can scan the whole anal canal within 10 seconds with a resolution of 89 μm, a maximum FOV of 100 mm × 120 mm, and a depth-of-field (DOF) of 0.65 mm. We also demonstrate the performance of the AnCam in whole anal canal imaging in both animal models and real patients. In addition to this, the PanCam is based on a smartphone platform integrated with a panoramic annular lens (PAL), and can capture a FOV of 18 mm × 120 mm in a single shot with a resolution of 100─140 μm. In this work we demonstrate the PanCam’s performance in imaging a stained tissue sample.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Transcription factor p53 is the most commonly altered gene in human cancer. As a redox-active protein in direct contact with DNA, p53 can directly sense oxidative stress through DNA-mediated charge transport. Electron hole transport occurs with a shallow distance dependence over long distances through the π-stacked DNA bases, leading to the oxidation and dissociation of DNA-bound p53. The extent of p53 dissociation depends upon the redox potential of the response element DNA in direct contact with each p53 monomer. The DNA sequence dependence of p53 oxidative dissociation was examined by electrophoretic mobility shift assays using radiolabeled oligonucleotides containing both synthetic and human p53 response elements with an appended anthraquinone photooxidant. Greater p53 dissociation is observed from DNA sequences containing low redox potential purine regions, particularly guanine triplets, within the p53 response element. Using denaturing polyacrylamide gel electrophoresis of irradiated anthraquinone-modified DNA, the DNA damage sites, which correspond to locations of preferred electron hole localization, were determined. The resulting DNA damage preferentially localizes to guanine doublets and triplets within the response element. Oxidative DNA damage is inhibited in the presence of p53, however, only at DNA sites within the response element, and therefore in direct contact with p53. From these data, predictions about the sensitivity of human p53-binding sites to oxidative stress, as well as possible biological implications, have been made. On the basis of our data, the guanine pattern within the purine region of each p53-binding site determines the response of p53 to DNA-mediated oxidation, yielding for some sequences the oxidative dissociation of p53 from a distance and thereby providing another potential role for DNA charge transport chemistry within the cell.

To determine whether the change in p53 response element occupancy observed in vitro also correlates in cellulo, chromatin immunoprecipition (ChIP) and quantitative PCR (qPCR) were used to directly quantify p53 binding to certain response elements in HCT116N cells. The HCT116N cells containing a wild type p53 were treated with the photooxidant [Rh(phi)2bpy]3+, Nutlin-3 to upregulate p53, and subsequently irradiated to induce oxidative genomic stress. To covalently tether p53 interacting with DNA, the cells were fixed with disuccinimidyl glutarate and formaldehyde. The nuclei of the harvested cells were isolated, sonicated, and immunoprecipitated using magnetic beads conjugated with a monoclonal p53 antibody. The purified immounoprecipiated DNA was then quantified via qPCR and genomic sequencing. Overall, the ChIP results were significantly varied over ten experimental trials, but one trend is observed overall: greater variation of p53 occupancy is observed in response elements from which oxidative dissociation would be expected, while significantly less change in p53 occupancy occurs for response elements from which oxidative dissociation would not be anticipated.

The chemical oxidation of transcription factor p53 via DNA CT was also investigated with respect to the protein at the amino acid level. Transcription factor p53 plays a critical role in the cellular response to stress stimuli, which may be modulated through the redox modulation of conserved cysteine residues within the DNA-binding domain. Residues within p53 that enable oxidative dissociation are herein investigated. Of the 8 mutants studied by electrophoretic mobility shift assay (EMSA), only the C275S mutation significantly decreased the protein affinity (KD) for the Gadd45 response element. EMSA assays of p53 oxidative dissociation promoted by photoexcitation of anthraquinone-tethered Gadd45 oligonucleotides were used to determine the influence of p53 mutations on oxidative dissociation; mutation to C275S severely attenuates oxidative dissociation while C277S substantially attenuates dissociation. Differential thiol labeling was used to determine the oxidation states of cysteine residues within p53 after DNA-mediated oxidation. Reduced cysteines were iodoacetamide labeled, while oxidized cysteines participating in disulfide bonds were 13C2D2-iodoacetamide labeled. Intensities of respective iodoacetamide-modified peptide fragments were analyzed using a QTRAP 6500 LC-MS/MS system, quantified with Skyline, and directly compared. A distinct shift in peptide labeling toward 13C2D2-iodoacetamide labeled cysteines is observed in oxidized samples as compared to the respective controls. All of the observable cysteine residues trend toward the heavy label under conditions of DNA CT, indicating the formation of multiple disulfide bonds potentially among the C124, C135, C141, C182, C275, and C277. Based on these data it is proposed that disulfide formation involving C275 is critical for inducing oxidative dissociation of p53 from DNA.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hairpin pyrrole-imdazole polyamides are cell-permeable, sequence-programmable oligomers that bind in the minor groove of DNA. This thesis describes studies of Py-Im polyamides targeted to biologically important DNA repeat sequences for the purpose of modulating disease states. Design of a hairpin polyamide that binds the CG dyad, a site of DNA methylation that can become dysregulated in cancer, is described. We report the synthesis of a DNA methylation antagonist, its sequence specificity and affinity informed by Bind-n-Seq and iteratively designed, which improves inhibitory activity in a cell-free assay by 1000-fold to low nanomolar IC50. Additionally, a hairpin polyamide targeted to the telomeric sequence is found to trigger a slow necrotic-type cell death with the release of inflammatory molecules in a model of B cell lymphoma. The effects of the polyamide are unique in this class of oligomers; its effects are characterized and a functional assay of phagocytosis by macrophages is described. Additionally, hairpin polyamides targeted to pathologically expanded CTG•CAG triplet repeat DNA sequences, the molecular cause of myotonic dystrophy type 1, are synthesized and assessed for toxicity. Lastly, ChIP-seq of Hypoxia-Inducible Factor is performed under hypoxia-induced conditions. The study results show that ChIP-seq can be employed to understand the genome-wide perturbation of Hypoxia-Inducible Factor occupancy by a Py-Im polyamide.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The first part of this thesis combines Bolocam observations of the thermal Sunyaev-Zel’dovich (SZ) effect at 140 GHz with X-ray observations from Chandra, strong lensing data from the Hubble Space Telescope (HST), and weak lensing data from HST and Subaru to constrain parametric models for the distribution of dark and baryonic matter in a sample of six massive, dynamically relaxed galaxy clusters. For five of the six clusters, the full multiwavelength dataset is well described by a relatively simple model that assumes spherical symmetry, hydrostatic equilibrium, and entirely thermal pressure support. The multiwavelength analysis yields considerably better constraints on the total mass and concentration compared to analysis of any one dataset individually. The subsample of five galaxy clusters is used to place an upper limit on the fraction of pressure support in the intracluster medium (ICM) due to nonthermal processes, such as turbulent and bulk flow of the gas. We constrain the nonthermal pressure fraction at r500c to be less than 0.11 at 95% confidence, where r500c refers to radius at which the average enclosed density is 500 times the critical density of the Universe. This is in tension with state-of-the-art hydrodynamical simulations, which predict a nonthermal pressure fraction of approximately 0.25 at r500c for the clusters in this sample.

The second part of this thesis focuses on the characterization of the Multiwavelength Sub/millimeter Inductance Camera (MUSIC), a photometric imaging camera that was commissioned at the Caltech Submillimeter Observatory (CSO) in 2012. MUSIC is designed to have a 14 arcminute, diffraction-limited field of view populated with 576 spatial pixels that are simultaneously sensitive to four bands at 150, 220, 290, and 350 GHz. It is well-suited for studies of dusty star forming galaxies, galaxy clusters via the SZ Effect, and galactic star formation. MUSIC employs a number of novel detector technologies: broadband phased-arrays of slot dipole antennas for beam formation, on-chip lumped element filters for band definition, and Microwave Kinetic Inductance Detectors (MKIDs) for transduction of incoming light to electric signal. MKIDs are superconducting micro-resonators coupled to a feedline. Incoming light breaks apart Cooper pairs in the superconductor, causing a change in the quality factor and frequency of the resonator. This is read out as amplitude and phase modulation of a microwave probe signal centered on the resonant frequency. By tuning each resonator to a slightly different frequency and sending out a superposition of probe signals, hundreds of detectors can be read out on a single feedline. This natural capability for large scale, frequency domain multiplexing combined with relatively simple fabrication makes MKIDs a promising low temperature detector for future kilopixel sub/millimeter instruments. There is also considerable interest in using MKIDs for optical through near-infrared spectrophotometry due to their fast microsecond response time and modest energy resolution. In order to optimize the MKID design to obtain suitable performance for any particular application, it is critical to have a well-understood physical model for the detectors and the sources of noise to which they are susceptible. MUSIC has collected many hours of on-sky data with over 1000 MKIDs. This work studies the performance of the detectors in the context of one such physical model. Chapter 2 describes the theoretical model for the responsivity and noise of MKIDs. Chapter 3 outlines the set of measurements used to calibrate this model for the MUSIC detectors. Chapter 4 presents the resulting estimates of the spectral response, optical efficiency, and on-sky loading. The measured detector response to Uranus is compared to the calibrated model prediction in order to determine how well the model describes the propagation of signal through the full instrument. Chapter 5 examines the noise present in the detector timestreams during recent science observations. Noise due to fluctuations in atmospheric emission dominate at long timescales (less than 0.5 Hz). Fluctuations in the amplitude and phase of the microwave probe signal due to the readout electronics contribute significant 1/f and drift-type noise at shorter timescales. The atmospheric noise is removed by creating a template for the fluctuations in atmospheric emission from weighted averages of the detector timestreams. The electronics noise is removed by using probe signals centered off-resonance to construct templates for the amplitude and phase fluctuations. The algorithms that perform the atmospheric and electronic noise removal are described. After removal, we find good agreement between the observed residual noise and our expectation for intrinsic detector noise over a significant fraction of the signal bandwidth.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The optomechanical interaction is an extremely powerful tool with which to measure mechanical motion. The displacement resolution of chip-scale optomechanical systems has been measured on the order of 1⁄10th of a proton radius. So strong is this optomechanical interaction that it has recently been used to remove almost all thermal noise from a mechanical resonator and observe its quantum ground-state of motion starting from cryogenic temperatures.

In this work, chapter 1 describes the basic physics of the canonical optomechanical system, optical measurement techniques, and how the optomechanical interaction affects the coupled mechanical resonator. In chapter 2, we describe our techniques for realizing this canonical optomechanical system in a chip-scale form factor.

In chapter 3, we describe an experiment where we used radiation pressure feedback to cool a mesoscopic mechanical resonator near its quantum ground-state from room-temperature. We cooled the resonator from a room temperature phonon occupation of <n> = 6.5 million to an occupation of <n> = 66, which means the resonator is in its ground state approximately 2% of the time, while being coupled to a room-temperature thermal environment. At the time of this work, this is the closest a mesoscopic mechanical resonator has been to its ground-state of motion at room temperature, and this work begins to open the door to room-temperature quantum control of mechanical objects.

Chapter 4 begins with the realization that the displacement resolutions achieved by optomechanical systems can surpass those of conventional MEMS sensors by an order of magnitude or more. This provides the motivation to develop and calibrate an optomechanical accelerometer with a resolution of approximately 10 micro-g/rt-Hz over a bandwidth of approximately 30 kHz. In chapter 5, we improve upon the performance and practicality of this sensor by greatly increasing the test mass size, investigating and reducing low-frequency noise, and incorporating more robust optical coupling techniques and capacitive wavelength tuning. Finally, in chapter 6 we present our progress towards developing another optomechanical inertial sensor - a gyroscope.