899 resultados para Chenqimogou site
Resumo:
Contaminants discharging from on-site wastewater treatment systems (OSWTSs) can impact groundwater quality, threatening human health and surface water ecosystems. Risk of negative impacts becomes elevated in areas of extreme vulnerability with high water tables, where thin unsaturated intervals limit vadose zone attenuation. A combined geophysical/hydrogeological investigation into the effects of an OSWTS, located over a poorly productive aquifer (PPA) with thin subsoil cover, aimed to characterise effluent impacts on groundwater. Groundwater, sampled from piezometers down-gradient of the OSWTS percolation area displayed spatially erratic, yet temporally consistent, contaminant distributions. Electrical resistivity tomography identified an area of gross groundwater contamination close to the percolation area and, when combined with seismic refraction and water quality data, indicated that infiltrating effluent reaching the water table discharged to a deeper more permeable zone of weathered shale resting on more competent bedrock. Subsurface structure, defined by geophysics, indicated that elevated chemical and microbiological contaminant levels encountered in groundwater samples collected from piezometers, down-gradient of sampling points with lower contaminant levels, corresponded to those locations where piezometers were screened close to the weathered shale/competent rock interface; those immediately up-gradient were too shallow to intercept this interval, and thus the more impacted zone of the contaminant plume. Intermittent occurrence of faecal indicator bacteria more than 100 m down gradient of the percolation area suggested relatively short travel times. Study findings highlight the utility of geophysics as part of multidisciplinary investigations for OSWTS contaminant plume characterisation, while also demonstrating the capacity of effluent discharging to PPAs to impact groundwater quality at distance. Comparable geophysical responses observed in similar settings across Ireland suggest the phenomena observed in this study are more widespread than previously suspected.
Resumo:
The Ziegler Reservoir fossil site near Snowmass Village, Colorado, provides a unique opportunity to reconstruct high-altitude paleoenvironmental conditions in the Rocky Mountains during the last interglacial period. We used four different techniques to establish a chronological framework for the site. Radiocarbon dating of lake organics, bone collagen, and shell carbonate, and in situ cosmogenic Be and Al ages on a boulder on the crest of a moraine that impounded the lake suggest that the ages of the sediments that hosted the fossils are between ~ 140 ka and > 45 ka. Uranium-series ages of vertebrate remains generally fall within these bounds, but extremely low uranium concentrations and evidence of open-system behavior limit their utility. Optically stimulated luminescence (OSL) ages (n = 18) obtained from fine-grained quartz maintain stratigraphic order, were replicable, and provide reliable ages for the lake sediments. Analysis of the equivalent dose (D) dispersion of the OSL samples showed that the sediments were fully bleached prior to deposition and low scatter suggests that eolian processes were likely the dominant transport mechanism for fine-grained sediments into the lake. The resulting ages show that the fossil-bearing sediments span the latest part of marine isotope stage (MIS) 6, all of MIS 5 and MIS 4, and the earliest part of MIS 3.
Resumo:
The purpose of this research is to identify and assess the opportunities and challenges of implementing a Site Waste Management Plan (SWMP) on projects irrespective of size. In the UK, construction and demolition waste accounts for a third of all UK waste. There are a number of factors that influence the implementation of SWMPs. In order to identify and analyse these factors, 4 unstructured interviews were carried out and a sample of 56 participants completed a questionnaire survey. The scope of the study was limited to UK
construction industry professionals. The analysis revealed that more needs to be done if the industry is to meet government targets of reduction in construction related waste going to landfill. In addition, although SWMP may not yet be legally required on all construction projects, clients and contractors need to realise
the benefits to cut costs and implement best practice by adopting a SWMP. The benefits of implementing a SWMP will not only help to achieve this but also gain significant cost savings on projects and is also extremely beneficial to the environment. This study presents evidence that contractors need to do more to reduce waste and draws a clear link between waste reduction and the implementation of SWMPs. The findings are useful in the ongoing efforts to encourage the industry to find smarter, more efficient and less
damaging ways to operate
Resumo:
Reducing wafer metrology continues to be a major target in semiconductor manufacturing efficiency initiatives due to it being a high cost, non-value added operation that impacts on cycle-time and throughput. However, metrology cannot be eliminated completely given the important role it plays in process monitoring and advanced process control. To achieve the required manufacturing precision, measurements are typically taken at multiple sites across a wafer. The selection of these sites is usually based on a priori knowledge of wafer failure patterns and spatial variability with additional sites added over time in response to process issues. As a result, it is often the case that in mature processes significant redundancy can exist in wafer measurement plans. This paper proposes a novel methodology based on Forward Selection Component Analysis (FSCA) for analyzing historical metrology data in order to determine the minimum set of wafer sites needed for process monitoring. The paper also introduces a virtual metrology (VM) based approach for reconstructing the complete wafer profile from the optimal sites identified by FSCA. The proposed methodology is tested and validated on a wafer manufacturing metrology dataset. © 2012 IEEE.
Resumo:
This paper reports an approach by which laboratory based testing and numerical modelling can be combined to predict the long term performance of a range of concretes exposed to marine environments. Firstly, a critical review of the test methods for assessing the chloride penetration resistance of concrete is given. The repeatability of the different test results is also included. In addition to the test methods, a numerical simulation model is used to explore the test data further to obtain long-term chloride ingress trends. The combined use of testing and modelling is validated with the help of long-term chloride ingress data from a North Sea exposure site. In summary, the paper outlines a methodology for determining the long term performance of concrete in marine environments.
Resumo:
The construction industry in Northern Ireland is one of the major contributors of construction waste to landfill each year. The aim of this research paper is to identify the core on-site management causes of material waste on construction sites in Northern Ireland and to illustrate various methods of prevention which can be adopted. The research begins with a detailed literature review and is complemented with the conduction of semi-structured interviews with 6 professionals who are experienced and active within the Northern Ireland construction industry. Following on from the literature review and interviews analysis, a questionnaire survey is developed to obtain further information in relation to the subject area. The questionnaire is based on the key findings of the previous stages to direct the research towards the most influential factors. The analysis of the survey responses reveals that the core causes of waste generation include a rushed program, poor handling and on-site damage of materials, while the principal methods of prevention emerge as the adequate storage, the reuse of material on-site and efficient material ordering. Furthermore, the role of the professional background in the shaping of perceptions relevant to waste management is also investigated and significant differences are identified. The findings of this research are beneficial for the industry as they enhance the understanding of construction waste generation causes and highlight the practices required to reduce waste on-site in the context of sustainable development.