959 resultados para CMF, molecular cloud, extraction algorithm
Resumo:
A method is presented for the direct extraction of the recombinant protein Long-R-3-IGF-I from inclusion bodies located in the cytoplasm of intact Escherichia coli cells. Chemical treatment with 6M urea, 3 mM EDTA, and 20 mM dithiothreitol (DTT) at pH 9.0 proved an effective combination for extracting recombinant protein from intact cells. Comparable levels of Long-R-3-IGF-I were recovered by direct extraction as achieved by in vitro dissolution following mechanical disruption. However, the purity of directly extracted recombinant protein was lower due to contamination by bacterial cell components. The kinetics of direct extraction are described using a first-order equation with the time constant of 3 min. Urea appears important for permeabilization of the cell and dissolution of the inclusion body. Conversely, EDTA is involved in permeabilization of the cell wall and DTT enhances protein release. pH proved to be important with lower levels of protein release achieved at low pH values (
Resumo:
Recently Adams and Bischof (1994) proposed a novel region growing algorithm for segmenting intensity images. The inputs to the algorithm are the intensity image and a set of seeds - individual points or connected components - that identify the individual regions to be segmented. The algorithm grows these seed regions until all of the image pixels have been assimilated. Unfortunately the algorithm is inherently dependent on the order of pixel processing. This means, for example, that raster order processing and anti-raster order processing do not, in general, lead to the same tessellation. In this paper we propose an improved seeded region growing algorithm that retains the advantages of the Adams and Bischof algorithm fast execution, robust segmentation, and no tuning parameters - but is pixel order independent. (C) 1997 Elsevier Science B.V.
Resumo:
We have previously detected two related murine nuclear proteins, p160 and p67, that can bind to the leucine zipper motif within the negative regulatory domain of the Myb transcription factor. We now describe the molecular cloning of cDNA corresponding to murine p160. The P160 gene is located on mouse chromosome 11, and related sequences are found on chromosomes 1 and 12. The predicted p160 protein is novel, and in agreement with previous studies, we find that the corresponding 4.5-kb mRNA is ubiquitously expressed. We showed that p67 is an N-terminal fragment of p160 which is generated by proteolytic cleavage in certain cell types. The protein encoded by the cloned p160 cDNA and an engineered protein (p67*) comprising the amino-terminal region of p160 exhibit binding specificities for the Myb and Jun leucine zipper regions identical to those of endogenous p160 and p67, respectively. This implies that the Myb-binding site of p160 lies within the N-terminal 580 residues and that the Jun-binding site is C-terminal to this position. Moreover, we show that p67* but not p160 can inhibit transactivation by Myb. Unexpectedly, immunofluorescence studies show that p160 is localized predominantly in the nucleolus. The implications of these results for possible functions of p160 are discussed.
Resumo:
Four adducts of triphenylphosphine oxide with aromatic carboxylic acids have been synthesized and tested for second-order non-linear optical properties. These were with N-methylpyrrole-2-carboxylic acid (I), indole-2-carboxylic acid (2), 3-dimethylaminobenzoic acid (3), and thiophen-2-carboxylic acid (4). Compound (1) produced clear, colourless crystals (space group P2(1)2(1)2(1) With a 9.892(1), b 14.033(1), c 15.305(1) Angstrom, Z 4) which allowed the structure to be determined by X-ray diffraction.
Resumo:
Self-incompatibility RNases (S-RNases) are an allelic series of style glycoproteins associated with rejection of self-pollen in solanaceous plants. The nucleotide sequences of S-RNase alleles from several genera have been determined, but the structure of the gene products has only been described for those from Nicotiana alata. We report on the N-glycan structures and the disulfide bonding of the S-3-RNase from wild tomato (Lycopersicon peruvianum) and use this and other information to construct a model of this molecule. The S-3-RNase has a single N-glycosylation site (Asn-28) to which one of three N-glycans is attached. S-3-RNase has seven Cys residues; six are involved in disulfide linkages (Cys-16-Cys-21, Cys-46-Cys-91, and Cys-166-Cys-177), and one has a free thiol group (Cys-150). The disulfide-bonding pattern is consistent with that observed in RNase Rh, a related RNase for which radiographic-crystallographic information is available. A molecular model of the S-3-RNase shows that four of the most variable regions of the S-RNases are clustered on one surface of the molecule. This is discussed in the context of recent experiments that set out to determine the regions of the S-RNase important for recognition during the self-incompatibility response.
Resumo:
A clone encoding ovine preprogastrin was isolated from a sheep genomic library. The deduced 104 amino acid sequence of ovine preprogastrin was 92% and 68% identical to the sequences of bovine and human preprogastrin, respectively. While the similarity was greatest in the gastrin-17 sequence, an unexpected similarity was also observed in the N-terminus of mature progastrin.
Resumo:
The interference in a phase space algorithm of Schleich and Wheeler [Nature 326, 574 (1987)] is extended to the hyperbolic space underlying the group SU(1,1). The extension involves introducing the notion of weighted areas. Analytic expressions for the asymptotic forms for overlaps between the eigenstates of the generators of su(1,1) thus obtained are found to be in excellent agreement with the numerical results.[S1050-2947(98)08602-8].
Resumo:
This communication describes an improved one-step solid-phase extraction method for the recovery of morphine (M), morphine-3-glucuronide (M3G), and morphine-6-glucuronide (M6G) from human plasma with reduced coextraction of endogenous plasma constituents, compared to that of the authors' previously reported method. The magnitude of the peak caused by endogenous plasma components in the chromatogram that eluted immediately before the retention time of M3G has been reduced (similar to 80%) significantly (p < 0.01) while achieving high extraction efficiencies for the compounds of interest, viz morphine, M6G, and M3G (93.8 +/- 2.5, 91.7 +/- 1.7, and 93.1 +/- 2.2%, respectively). Furthermore, when the improved solid-phase extraction method was used, the extraction cartridge-derived late-eluting peak (retention time 90 to 100 minutes) reported in our previous method, was no longer present in the plasma extracts. Therefore the combined effect of reducing the recovery of the endogenous components of plasma that chromatographed just before the retention time of M3G and the removal of the late-eluting, extraction cartridge-derived peak has resulted in a decrease in the chromatographic run-time to 20 minutes, thereby increasing the sample throughput by up to 100%.
Resumo:
A new method of poly-beta-hydroxybutyrate (PHB) extraction from recombinant E. coli is proposed, using homogenization and centrifugation coupled with sodium hypochlorite treatment. The size of PHB granules and cell debris in homogenates was characterised as a function of the number of homogenization passes. Simulation was used to develop the PHB and cell debris fractionation system, enabling numerical examination of the effects of repeated homogenization and centrifuge-feedrate variation. The simulation provided a good prediction of experimental performance. Sodium hypochlorite treatment was necessary to optimise PHB fractionation. A PHB recovery of 80% at a purity of 96.5% was obtained with the final optimised process. Protein and DNA contained in the resultant product were negligible. The developed process holds promise for significantly reducing the recovery cost associated with PHB manufacture.
Resumo:
A sensitive and reproducible solid-phase extraction (SPE) method for the quantification of oxycodone in human plasma was developed. Varian Certify SPE cartridges containing both C-8 and benzoic acid functional groups were the most suitable for the extraction of oxycodone and codeine (internal standard), with consistently high (greater than or equal to 80%) and reproducible recoveries. The elution mobile phase consisted of 1.2 ml of butyl chloride-isopropanol (80:20, v/v) containing 2% ammonia. The quantification limit for oxycodone was 5.3 pmol on-column. Within-day and inter-day coefficients of variation were 1.2% and 6.8% respectively for 284 nM oxycodone and 9.5% and 6.2% respectively for 28.4 nM oxycodone using 0.5-ml plasma aliquots. (C) 1998 Elsevier Science BN. All rights reserved.
Resumo:
Activation of the human complement system of plasma proteins in response to infection or injury produces a 4-helix bundle glycoprotein (74 amino acids) known as C5a. C5a binds to G-protein-coupled receptors on cell surfaces triggering receptor-ligand internalization, signal transduction, and powerful inflammatory responses. Since excessive levels of C5a are associated with autoimmune and chronic inflammatory disorders, inhibitors of receptor activation may have therapeutic potential. We now report solution structures and receptor-binding and antagonist activities for some of the first small molecule antagonists of C5a derived from its hexapeptide C terminus. The antagonist NMe-Phe-Lys-Pro-D-Cha-Trp-D-Arg-CO2H (1) surprisingly shows an unusually well-defined solution structure as determined by H-1 NMR spectroscopy. This is one of the smallest acyclic peptides found to possess a defined solution conformation, which can be explained by the constraining role of intramolecular hydrogen bonding. NOE and coupling constant data, slow deuterium exchange, and a low dependence on temperature for the chemical shift of the D-Cha-NH strongly indicate an inverse gamma turn stabilized by a D-Cha-NH ... OC-Lys hydrogen bond. Smaller conformational populations are associated with a hydrogen bond between Trp-NH ... OC-Lys, defining a type II beta turn distorted by the inverse gamma turn incorporated within it. An excellent correlation between receptor-affinity and antagonist activity is indicated for a limited set of synthetic peptides. Conversion of the C-terminal carboxylate of 1 to an amide decreases antagonist potency 5-fold, but potency is increased up to 10-fold over 1 if the amide bond is made between the C-terminal carboxylate and a Lys/Orn side chain to form a cyclic analogue. The solution structure of cycle 6 also shows gamma and beta turns; however, the latter occurs in a different position, and there are clear conformational changes in 6 vs 1 that result in enhanced activity. These results indicate that potent C5a antagonists can be developed by targeting site 2 alone of the C5a receptor and define a novel pharmacophore for developing powerful receptor probes or drug candidates.
Resumo:
The basic framework for the JAK/STAT pathway is well documented. Recruitment of latent cytoplasmic STAT transcription factors to tyrosine phosphorylated docking sites on cytokine receptors and their JAK-mediated phosphorylation instigates their translocation to the nucleus and their ability to bind DNA, The biochemical processes underlying recruitment and activation of this pathway have commonly been studied in reconstituted in vitro systems using previously defined recombinant signaling components. We have dissected the Interferon gamma (IFN gamma) signal transduction pathway in crude extracts from wild-type and STAT1-negative mutant cell Lines by real-time BIAcore analysis, size-exclusion (SE) chromatography and immune-detection. The data indicate that in detergent-free cell extracts: (1) the phospho-tyrosine (Y440P)-containing peptide motif of the IFN gamma-receptor ct-chain interacts directly with STAT1, or STAT1 complexes, and no other protein; (2) nonactivated STAT 1 is present in a higher molecular weight complex(es) and, at least for IFN gamma-primed cells, is available for recruitment to the activated IFN gamma-receptor from only a subset of such complexes; (3) activated STAT1 is released from the receptor as a monomer.
Resumo:
A simple method for the measurement of pindolol enantiomers by HPLC is presented. Alkalinized serum or urine is extracted with ethyl acetate and the residue remaining after evaporation of the organic layer is then derivatised with (S)-(-)-alpha-methylbenzyl isocyanate. The diastereoisomers of derivatised pindolol and metoprolol (internal standard) are separated by high-performance liquid chromatography (HPLC) using a C-18 silica column and detected using fluorescence (excitation lambda: 215 nm, emission lambda: 320 nm). The assay displays reproducible linearity for pindolol enantiomers with a correlation coefficient of r(2) greater than or equal to 0.998 over the concentration range 8-100 ng ml(-1) for plasma and 0.1-2.5 mu g ml(-1) for urine. The coefficient of variation for accuracy and precision of the quality control samples for both plasma and urine are consistently
Resumo:
We analyze the coherent formation of molecular Bose-Einstein condensate (BEC) from an atomic BEG, using a parametric field theory approach. We point out the transition between a quantum soliton regime, where atoms couple in a local way to a classical soliton domain, where a stable coupled-condensate soliton can form in three dimensions. This gives the possibility of an intense, stable atom-laser output. [S0031-9007(98)07283-4].
Resumo:
The human papillomaviruses (HPVs) are associated with several human epithelial diseases. These diseases are confined to cutaneous and mucosal epithelia and comprise papillomas (warts) and benign or malignant neoplasms. Globally, infection by HPVs presents a considerable health problem given that at any one time approximately 10% of the population may have warts of one form or another. Of more serious concern is the prevalence of HPV-associated cervical carcinoma. It is estimated that 500,000 new cases of cervical neoplasia are diagnosed per year (primarily squamous carcinomas). Thus, HPV-associated cancer represents one of the most common cancers afflicting women and is one of the three most common causes of cancer death among women globally.(15) Although some genotypes of human papillomaviruses are clearly associated with the development of cancer (in particular, HPVs 16 and 18) these viruses share significant structural and functional similarity to the nononcogenic genotypes, and one of the puzzles of HPV biology is why essentially similar viruses vary so widely in their oncogenic potential.