927 resultados para CENSORED SURVIVAL-DATA


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two distinct maintenance-data-models are studied: a government Enterprise Resource Planning (ERP) maintenance-data-model, and the Software Engineering Industries (SEI) maintenance-data-model. The objective is to: (i) determine whether the SEI maintenance-data-model is sufficient in the context of ERP (by comparing with an ERP case), (ii) identify whether the ERP maintenance-data-model in this study has adequately captured the essential and common maintenance attributes (by comparing with the SEI), and (iii) proposed a new ERP maintenance-data-model as necessary. Our findings suggest that: (i) there are variations to the SEI model in an ERP-context, and (ii) there are rooms for improvements in our ERP case’s maintenance-data-model. Thus, a new ERP maintenance-data-model capturing the fundamental ERP maintenance attributes is proposed. This model is imperative for: (i) enhancing the reporting and visibility of maintenance activities, (ii) monitoring of the maintenance problems, resolutions and performance, and (iii) helping maintenance manager to better manage maintenance activities and make well-informed maintenance decisions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ability to accurately predict the lifetime of building components is crucial to optimizing building design, material selection and scheduling of required maintenance. This paper discusses a number of possible data mining methods that can be applied to do the lifetime prediction of metallic components and how different sources of service life information could be integrated to form the basis of the lifetime prediction model

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In daily activities people are using a number of available means for the achievement of balance, such as the use of hands and the co-ordination of balance. One of the approaches that explains this relationship between perception and action is the ecological theory that is based on the work of a) Bernstein (1967), who imposed the problem of ‘the degrees of freedom’, b) Gibson (1979), who referred to the theory of perception and the way which the information is received from the environment in order for a certain movement to be achieved, c) Newell (1986), who proposed that movement can derive from the interaction of the constraints that imposed from the environment and the organism and d) Kugler, Kelso and Turvey (1982), who showed the way which “the degrees of freedom” are connected and interact. According to the above mentioned theories, the development of movement co-ordination can result from the different constraints that imposed into the organism-environment system. The close relation between the environmental and organismic constraints, as well as their interaction is responsible for the movement system that will be activated. These constraints apart from shaping the co-ordination of specific movements can be a rate limiting factor, to a certain degree, in the acquisition and mastering of a new skill. This frame of work can be an essential tool for the study of catching an object (e.g., a ball). The importance of this study becomes obvious due to the fact that movements that involved in catching an object are representative of every day actions and characteristic of the interaction between perception and action.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE: To introduce techniques for deriving a map that relates visual field locations to optic nerve head (ONH) sectors and to use the techniques to derive a map relating Medmont perimetric data to data from the Heidelberg Retinal Tomograph. METHODS: Spearman correlation coefficients were calculated relating each visual field location (Medmont M700) to rim area and volume measures for 10 degrees ONH sectors (HRT III software) for 57 participants: 34 with glaucoma, 18 with suspected glaucoma, and 5 with ocular hypertension. Correlations were constrained to be anatomically plausible with a computational model of the axon growth of retinal ganglion cells (Algorithm GROW). GROW generated a map relating field locations to sectors of the ONH. The sector with the maximum statistically significant (P < 0.05) correlation coefficient within 40 degrees of the angle predicted by GROW for each location was computed. Before correlation, both functional and structural data were normalized by either normative data or the fellow eye in each participant. RESULTS: The model of axon growth produced a 24-2 map that is qualitatively similar to existing maps derived from empiric data. When GROW was used in conjunction with normative data, 31% of field locations exhibited a statistically significant relationship. This significance increased to 67% (z-test, z = 4.84; P < 0.001) when both field and rim area data were normalized with the fellow eye. CONCLUSIONS: A computational model of axon growth and normalizing data by the fellow eye can assist in constructing an anatomically plausible map connecting visual field data and sectoral ONH data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sequences of two chloroplast photosystem genes, psaA and psbB, together comprising about 3,500 bp, were obtained for all five major groups of extant seed plants and several outgroups among other vascular plants. Strongly supported, but significantly conflicting, phylogenetic signals were obtained in parsimony analyses from partitions of the data into first and second codon positions versus third positions. In the former, both genes agreed on a monophyletic gymnosperms, with Gnetales closely related to certain conifers. In the latter, Gnetales are inferred to be the sister group of all other seed plants, with gymnosperms paraphyletic. None of the data supported the modern ‘‘anthophyte hypothesis,’’ which places Gnetales as the sister group of flowering plants. A series of simulation studies were undertaken to examine the error rate for parsimony inference. Three kinds of errors were examined: random error, systematic bias (both properties of finite data sets), and statistical inconsistency owing to long-branch attraction (an asymptotic property). Parsimony reconstructions were extremely biased for third-position data for psbB. Regardless of the true underlying tree, a tree in which Gnetales are sister to all other seed plants was likely to be reconstructed for these data. None of the combinations of genes or partitions permits the anthophyte tree to be reconstructed with high probability. Simulations of progressively larger data sets indicate the existence of long-branch attraction (statistical inconsistency) for third-position psbB data if either the anthophyte tree or the gymnosperm tree is correct. This is also true for the anthophyte tree using either psaA third positions or psbB first and second positions. A factor contributing to bias and inconsistency is extremely short branches at the base of the seed plant radiation, coupled with extremely high rates in Gnetales and nonseed plant outgroups. M. J. Sanderson,* M. F. Wojciechowski,*† J.-M. Hu,* T. Sher Khan,* and S. G. Brady

Relevância:

20.00% 20.00%

Publicador:

Resumo:

With the advent of Service Oriented Architecture, Web Services have gained tremendous popularity. Due to the availability of a large number of Web services, finding an appropriate Web service according to the requirement of the user is a challenge. This warrants the need to establish an effective and reliable process of Web service discovery. A considerable body of research has emerged to develop methods to improve the accuracy of Web service discovery to match the best service. The process of Web service discovery results in suggesting many individual services that partially fulfil the user’s interest. By considering the semantic relationships of words used in describing the services as well as the use of input and output parameters can lead to accurate Web service discovery. Appropriate linking of individual matched services should fully satisfy the requirements which the user is looking for. This research proposes to integrate a semantic model and a data mining technique to enhance the accuracy of Web service discovery. A novel three-phase Web service discovery methodology has been proposed. The first phase performs match-making to find semantically similar Web services for a user query. In order to perform semantic analysis on the content present in the Web service description language document, the support-based latent semantic kernel is constructed using an innovative concept of binning and merging on the large quantity of text documents covering diverse areas of domain of knowledge. The use of a generic latent semantic kernel constructed with a large number of terms helps to find the hidden meaning of the query terms which otherwise could not be found. Sometimes a single Web service is unable to fully satisfy the requirement of the user. In such cases, a composition of multiple inter-related Web services is presented to the user. The task of checking the possibility of linking multiple Web services is done in the second phase. Once the feasibility of linking Web services is checked, the objective is to provide the user with the best composition of Web services. In the link analysis phase, the Web services are modelled as nodes of a graph and an allpair shortest-path algorithm is applied to find the optimum path at the minimum cost for traversal. The third phase which is the system integration, integrates the results from the preceding two phases by using an original fusion algorithm in the fusion engine. Finally, the recommendation engine which is an integral part of the system integration phase makes the final recommendations including individual and composite Web services to the user. In order to evaluate the performance of the proposed method, extensive experimentation has been performed. Results of the proposed support-based semantic kernel method of Web service discovery are compared with the results of the standard keyword-based information-retrieval method and a clustering-based machine-learning method of Web service discovery. The proposed method outperforms both information-retrieval and machine-learning based methods. Experimental results and statistical analysis also show that the best Web services compositions are obtained by considering 10 to 15 Web services that are found in phase-I for linking. Empirical results also ascertain that the fusion engine boosts the accuracy of Web service discovery by combining the inputs from both the semantic analysis (phase-I) and the link analysis (phase-II) in a systematic fashion. Overall, the accuracy of Web service discovery with the proposed method shows a significant improvement over traditional discovery methods.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two current longitudinal studies in advanced countries, PSED II in the US and CAUSEE in Australia, have attempted to harmonize the major features of the research design. A comparison of the initial screening and first detailed interviews indicates a higher participation in new firm creation in the U.S. Similar types of persons are involved in both countries, albeit more immigrants, older individuals with more work experience and more established individuals in Australia. The nascent enterprises in the two countries are similar on many characteristics, although those in Australia report greater emphasis on new technology and international customers. Assessment of the prevalence of nascent enterprises and new firms from the Global Entrepreneurship Monitor surveys indicates a higher prevalence of new firms in Australia. These two longitudinal projects may help determine if this reflects a high proportion of new firm births or greater survival in the early years among Australian new firms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The construction industry has adapted information technology in its processes in terms of computer aided design and drafting, construction documentation and maintenance. The data generated within the construction industry has become increasingly overwhelming. Data mining is a sophisticated data search capability that uses classification algorithms to discover patterns and correlations within a large volume of data. This paper presents the selection and application of data mining techniques on maintenance data of buildings. The results of applying such techniques and potential benefits of utilising their results to identify useful patterns of knowledge and correlations to support decision making of improving the management of building life cycle are presented and discussed.