963 resultados para CD4 and CD8 cells
Resumo:
Acute myeloid leukaemia (AML) is a cancer of the haematopoietic system, which can in many cases only be cured by haematopoietic stem cell transplantation (HSCT) and donor lymphocyte infusion (DLI) (Burnett et al., 2011). This therapy is associated with the beneficial graft-versus-leukaemia (GvL) effect mediated by transplanted donor T and NK cells that either recognise mismatch HLA molecules or polymorphic peptides, so-called minor histocompatibility antigens, leukaemia-associated or leukaemia-specific antigens in the patient and thus eliminate remaining leukaemic blasts. Nevertheless, the mature donor-derived cells often trigger graft-versus-host disease (GvHD), leading to severe damages in patients’ epithelial tissue, mainly skin, liver and intestine (Bleakley & Riddell, 2004). Therefore, approaches for the selective mediation of strong GvL effects are needed, also in order to prevent relapse after transplantation. One promising opportunity is the in vitro generation of AML-reactive CD4+ T cells for adoptive transfer. CD4+ T cells are advantageous compared to CD8+ T cells, as HLA class II molecules are under non-inflammatory conditions only expressed on haematopoietic cells; a fact that would minimise GvHD (Klein & Sato, 2000). In this study, naive CD4+ T cells were isolated from healthy donors and were successfully stimulated against primary AML blasts in mini-mixed lymphocyte/leukaemia cell cultures (mini-MLLC) in eight patient/donor pairs. After three to seven weekly restimulations, T cells were shown to produce TH1 type cytokines and to be partially of monoclonal origin according to their TCR Vβ chain usage. Furthermore, they exhibited lytic activity towards AML blasts, which was mediated by the release of granzymes A and B and perforin. The patient/donor pairs used in this study were fully HLA-class I matched, except for one pair, and also matched for HLA-DR and -DQ, whereas -DP was mismatched in one or both alleles, reflecting the actual donor selection procedure in the clinic (Begovich et al., 1992). Antibody blocking experiments suggested that the generated CD4+ T cells were directed against the HLA-DP mismatches, which could be confirmed by the recognition of donor-derived lymphoblastoid cell lines (LCLs) electroporated with the mismatched DP alleles. Under non-inflammatory conditions primary fibroblasts did not express HLA-DP and were thus not recognised, supporting the idea of a safer application of CD4+ T cells regarding induction of GvHD. For the assessment of the biological significance of these T cells, they were adoptively transferred into NSG mice engrafted with human AML blasts, where they migrated to the bone marrow and lymphoid tissue and succeeded in eliminating the leukaemic burden after only one week. Therefore, AML-reactive CD4+ T cells expanded from the naive compartment by in vitro stimulation with primary leukaemia blasts appear to be a potent tool for DLI in HSCT patients and promise to mediate specific GvL effects without causing GvHD.
Resumo:
Protection against malaria can be achieved by induction of a strong CD8(+) T-cell response against the Plasmodium circumsporozoite protein (CSP), but most subunit vaccines suffer from insufficient memory responses. In the present study, we analyzed the impact of postimmunization sporozoite challenge on the development of long-lasting immunity. BALB/c mice were immunized by a heterologous prime/boost regimen against Plasmodium berghei CSP that induces a strong CD8(+) T-cell response and sterile protection, which is short-lived. Here, we show that protective immunity is prolonged by a sporozoite challenge after immunization. Repeated challenges induced sporozoite-specific antibodies that showed protective capacity. The numbers of CSP-specific CD8(+) T cells were not substantially enhanced by sporozoite infections; however, CSP-specific memory CD8(+) T cells of challenged mice displayed a higher cytotoxic activity than memory T cells of immunized-only mice. CD4(+) T cells contributed to protection as well; but CD8(+) memory T cells were found to be the central mediator of sterile protection. Based on these data, we suggest that prolonged protective immunity observed after immunization and infection is composed of different antiparasitic mechanisms including CD8(+) effector-memory T cells with increased cytotoxic activity as well as CD4(+) memory T cells and neutralizing antibodies.
Resumo:
AIDS is characterized by a progressive decrease of CD4+ helper T lymphocytes. Destruction of these cells may involve programmed cell death, apoptosis. It has previously been reported that apoptosis can be induced even in noninfected cells by HIV-1 gp120 and anti-gp120 antibodies. HIV-1 gp120 binds to T cells via CD4 and the chemokine coreceptor CXCR4 (fusin/LESTR). Therefore, we investigated whether CD4 and CXCR4 mediate gp120-induced apoptosis. We used human peripheral blood lymphocytes, malignant T cells, and CD4/CXCR4 transfectants, and found cell death induced by both cell surface receptors, CD4 and CXCR4. The induced cell death was rapid, independent of known caspases, and lacking oligonucleosomal DNA fragmentation. In addition, the death signals were not propagated via p56lck and Giα. However, the cells showed chromatin condensation, morphological shrinkage, membrane inversion, and reduced mitochondrial transmembrane potential indicative of apoptosis. Significantly, apoptosis was exclusively observed in CD4+ but not in CD8+ T cells, and apoptosis triggered via CXCR4 was inhibited by stromal cell-derived factor-1, the natural CXCR4 ligand. Thus, this mechanism of apoptosis might contribute to T cell depletion in AIDS and might have major implications for therapeutic intervention.
Resumo:
Background: CD4(+)CD25(high) regulatory T (T(Reg)) cells modulate antigen-specific T cell responses, and can suppress anti-viral immunity. In HTLV-1 infection, a selective decrease in the function of T(Reg) cell mediated HTLV-1-tax inhibition of FOXP3 expression has been described. The purpose of this study was to assess the frequency and phenotype of T(Reg) cells in HTLV-1 asymptomatic carriers and in HTLV-1-associated neurological disease (HAM/TSP) patients, and to correlate with measures of T cell activation. Results: We were able to confirm that HTLV-1 drives activation, spontaneous IFN gamma production, and proliferation of CD4+ T cells. We also observed a significantly lower proportion of CTLA-4(+) T(Reg) cells (CD4(+)CD25(high) T cells) in subjects with HAM/TSP patients compared to healthy controls. Ki-67 expression was negatively correlated to the frequency of CTLA-4(+) T(Reg) cells in HAM/TSP only, although Ki-67 expression was inversely correlated with the percentage of CD127(low) T(Reg) cells in healthy control subjects. Finally, the proportion of CD127(low) T(Reg) cells correlated inversely with HTLV-1 proviral load. Conclusion: Taken together, the results suggest that T(Reg) cells may be subverted in HAM/TSP patients, which could explain the marked cellular activation, spontaneous cytokine production, and proliferation of CD4(+) T cells, in particular those expressing the CD25(high)CD127(low) phenotype. T(Reg) cells represent a potential target for therapeutic intervention for patients with HTLV-1-related neurological diseases.
Resumo:
The NK1.1 molecule participates in NK, NKT, and T-cell activation, contributing to IFN-gamma production and cytotoxicity. To characterize the early immune response to Plasmodium chabaudi AS, spleen NK1.1(+) and NK1.1(-) T cells were compared in acutely infected C57BL/6 mice. The first parasitemia peak in C57BL/6 mice correlated with increase in CD4(+)NK1.1(+)TCR-alpha beta(+), CD8(+)NK1.1(+)TCR-alpha beta(+), and CD4(+)NK1.1(-)TCR-alpha beta(+) cell numbers per spleen, where a higher increment was observed for NK1.1(+) T cells compared to NK1.1(-) T cells. According to the ability to recognize the CD1d-alpha-GalCer tetramer, CD4(+)NK1.1(+) cells in 7-day infected mice were not predominantly invariant NKT cells. At that time, nearly all NK1.1(+) T cells and around 30% of NK1.1(-) T cells showed an experienced/activated (CD44(HI)CD69(HI)CD122(HI)) cell phenotype, with high expression of Fas and PD-L1 correlating with their low proliferative capacity. Moreover, whereas IFN-gamma production by CD4(+)NK1.1(+) cells peaked at day 4 p.i., the IFN-gamma response of CD4(+)NK1.1(-) cells continued to increase at day 5 of infection. We also observed, at day 7 p.i., 2-fold higher percentages of perforin(+) cells in CD8(+)NK1.1(+) cells compared to CD8(+)NK1.1(-) cells. These results indicate that spleen NK1.1(+) and NK1.1(-) T cells respond to acute P. chabaudi malaria with different kinetics in terms of activation, proliferation, and IFN-gamma production.
Resumo:
Many cervical cancers express the E7 protein of human papillomavirus 16 as a tumor-specific Ag (TSA). To establish the role of E7-specific T cell help in CD8(+) CTL-mediated tumor regression, C57BL/6J mice were immunized with E7 protein or with a peptide (GF001) comprising a minimal CTL epitope of E7, together with different adjuvants, Immunized mice were challenged with an E7-expressing tumor cell line, EL4.E7. Growth of EL4.E7 was reduced following immunization with E7 and Quil-A (an adjuvant that induced a Th1-type response to E7) or with GF001 and Quil-A, Depletion of CD8(+) cells, but not CD4(+) cells, from an immunized animal abrogated protection, confirming that E7-specific CTL are necessary and sufficient for TSA-specific protection in this model. Immunization with E7 and Algammulin (an alum-based adjuvant) induced a Th2-like response and provided; no tumor protection. To investigate whether a Th2 T helper response to E7 could prevent the development of an E7-specific CTL-mediated protection, mice were simultaneously immunized with E7/Algammulin and GF001/Quil-A or, alternatively, were immunized with GF011/Quil-A 8 wk after immunization with E7/Algammulin, Tumor protection was observed in each case. We conclude that an established Th2 response to a TSA does not prevent the development of TSA-specific tumor protective CTL.
Resumo:
CD4-selective targeting of an antibody-polycation-DNA complex was investigated The complex was synthesized with the anti-CD4 monoclonal antibody B-F5, polylysine(268) (pLL) and either the pGL3 control vector containing the luciferase reporter gene or the pGeneGrip vector containing the green fluorescent protein (GFP) gene. B-F5-pLL-DNA complexes inhibited the binding of I-125-B-F5 to CD4(+) Jurkat cells, while complexes synthesised either without B-F5 or using a non-specific mouse IgG1 antibody had little or no effect Expression of the luciferase reporter gene was achieved in Jurkat cells using the B-F5-pLL-pGL3 complex and was enhanced in the presence of PMA. Negligible luciferase activity was defected with the non-specific antibody complex in Jurkat cells or with the B-F5-pLL-pGL3 complex in the CD4(-) K-562 cells. Using complexes synthesised with the pGeneGrip vector, the transfection efficiency in Jurkat and K-562 cells was examined using confocal microscopy. More than 95% of Jurkat cells expressed GFP and the level of this expression was markedly enhanced by PMA. Negligible GFP expression was seen in K-562 cells or when B-F5 was replaced by a nonspecific antibody. Using flow cytometry, fluorescein-labelled complex showed specific targeting to CD4(+) cells in a mixed cell population from human peripheral blood. These studies demonstrate the selective transfection of CD4(+) T-lymphoid cells using a polycation-based gene delivery system. The complex may provide a means of delivering anti-HIV gene therapies to CD4(+) cells in vivo.
Resumo:
The Leishmune (R) vaccine has been used in endemic areas to prevent canine visceral leishmaniasis in Brazil, but cytokine production induced by vaccination has rarely been investigated in dogs. This study aimed to evaluate the immune response of dogs vaccinated with Leishmune FML vaccine (Fort Dodge) against total antigen of Leishmania (Leishmania) chagasi (TAg) and FML. Twenty healthy dogs from Aracatuba, Sao Paulo, Brazil, an endemic leishmaniasis area, received three consecutive subcutaneous injection of Leishmune vaccine at 21-day intervals. PBMC were isolated before and 10 days after completing vaccination and lymphoproliferative response and antibody production against FML or total promastigote antigen were tested. Cytokines IFN-gamma, IL-4 and TNF-alpha were measured in culture supernatant and CD4+/CD25+ and CD8+/CD25+ T cell presence was determined. Analysis of the data indicated that the vaccine conferred humoral responses (100%) against both antigens and cellular immunity to FML (85%) and total antigen (80%), the supernatant of cultured cells stimulated with TAg and FML showed an increase in IFN-gamma (P < 0.05), and the vaccine reduced CD4+/CD25+ T cell presence compared to that observed before vaccination. These responses may constitute part of the immune mechanism induced by Leishmune. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Immune deviation of cytolytic T cell function, induced by type 2 cytokines like IL-4, is an attractive concept to explain failure of the immune system in some diseases. However, this concept is challenged by previous conflicting results on whether type 2 cytokine-producing CD8(+) T cells are cytolytic. Therefore, we have analyzed the relationship between cytolytic activity and cytokine production among large numbers of primary CD8(+) T cell clones. Single murine CD8(+) T cells of naive phenotype were activated at high efficiency with immobilized Abs to CD3, CD8, and CD11a in the presence of IL-2 (neutral conditions) or IL-2, IL-4, and anti-IFN-gamma Ab (type 2-polarizing conditions) for 8-9 days. Under neutral conditions, most clones produced IFN-gamma without IL-4 and were cytolytic. Under type 2-polarizing conditions, most clones produced IFN-gamma and IL-4 but displayed variable cytolytic activity and CD8 expression. Separation on the basis of surface CD8 levels revealed that, compared with CD8(high) cells from the same cultures, CD8(low) cells were poorly cytolytic and expressed low levels of perforin mRNA and protein and granzyme A, B, and C mRNA. A similar, smaller population of noncytolytic CD8(low) cells was identified among CD8(low) T cells activated in mixed lymphocyte reaction with IL-4. Variable efficiency of generation of the noncytolytic cells may account for the differing results of earlier studies. We conclude that IL-4 promotes the development of a noncytolytic CD8(low) T cell phenotype that might be important in tumor- or pathogen-induced immune deviation.
Resumo:
Objective: Immunosenescence and cognitive decline are common markers of the aging process. Taking into consideration the heterogeneity observed in aging processes and the recently described link between lymphocytes and cognition, we herein explored the possibility of an association between alterations in lymphocytic populations and cognitive performance. Methods: In a cohort of cognitively healthy adults (n = 114), previously characterized by diverse neurocognitive/psychological performance patterns, detailed peripheral blood immunophenotyping of both the innate and adaptive immune systems was performed by flow cytometry. Results: Better cognitive performance was associated with lower numbers of effector memory CD4(+) T cells and higher numbers of naive CD8(+) T cells and B cells. Furthermore, effector memory CD4(+) T cells were found to be predictors of general and executive function and memory, even when factors known to influence cognitive performance in older individuals (e.g., age, sex, education, and mood) were taken into account. Conclusions: This is the first study in humans associating specific phenotypes of the immune system with distinct cognitive performance in healthy aging.
Resumo:
NKT cells, defined as T cells expressing the NK cell marker NK1.1, are involved in tumor rejection and regulation of autoimmunity via the production of cytokines. We show in this study that two types of NKT cells can be defined on the basis of their reactivity to the monomorphic MHC class I-like molecule CD1d. One type of NKT cell is positively selected by CD1d and expresses a biased TCR repertoire together with a phenotype found on activated T cells. A second type of NKT cell, in contrast, develops in the absence of CD1d, and expresses a diverse TCR repertoire and a phenotype found on naive T cells and NK cells. Importantly, the two types of NKT cells segregate in distinct tissues. Whereas thymus and liver contain primarily CD1d-dependent NKT cells, spleen and bone marrow are enriched in CD1d-independent NKT cells. Collectively, our data suggest that recognition of tissue-specific ligands by the TCR controls localization and activation of NKT cells.
Resumo:
We have prepared transgenic mice whose T cells constitutively express a chimeric receptor combining extracellular human IL-4R and intracellular IL-2Rbeta segments. This receptor can transmit IL-2/IL-15-like signals in response to human, but not mouse, IL-4. We used these animals to explore to what extent functional IL-2R/IL-15R expression controls the capacity of T cells to proliferate in response to IL-2/IL-15-like signals. After activation with Con A, naive transgenic CD8+ and CD4+ T cells respond to human IL-4 as well as to IL-2. Without prior activation, they failed to proliferate in response to human IL-4, although human IL-4 did prolong their survival. Thus, IL-2-induced proliferation of activated T cells requires at least one other Ag-induced change apart from the induction of a functional IL-2R. However, a fraction of CD8+CD44high T cells proliferate in human IL-4 without antigenic stimulation or syngeneic feeder cells. In contrast, CD4+CD44high T cells are not constitutively responsive to human IL-4. We conclude that although all transgenic T cells express a functional chimeric receptor, only some CD8+CD44high T cells contain all molecules required for entry into the cell cycle in response to human IL-4 or IL-15.
Resumo:
Resistance and susceptibility to infection with the intracellular parasite, Leishmania major, are mediated by parasite-specific CD4+ Th1 and Th2 cells, respectively. It is well established that the protective effect of parasite-specific CD4+ Th1 cells is largely dependent upon the IFN-gamma produced. However, recent results indicate that the effect of Th1 cells on resolution of lesions induced by L. major in genetically resistant mice also requires a functional Fas-FasL pathway of cytotoxicity. In contrast to resistant mice, susceptible BALB/c mice develop aberrant Th2 responses following infection with L. major and consequently suffer progressive disease. These outcomes clearly depends upon the production of interleukin 4 (IL-4) early after infection. We have shown that a burst of IL-4 mRNA, peaking in draining lymph nodes of BALB/c mice 16 hrs after infection, occurs within CD4+ T cells that express V beta 4-V alpha 8 T cell receptors. In contrast to control and V beta 6-deficient mice, V beta 4-deficient BALB/c mice were resistant to infection, demonstrating the role of these cells in Th2 development. The early IL-4 response was absent in these mice, and Th1 responses occurred following infection. The LACK antigen of L. major induced comparable IL-4 production in V beta 4-V alpha 8 CD4+ T cells. Thus, the IL-4 required for Th2 development and susceptibility to L. major is produced by a restricted population of V beta 4-V alpha 8 CD4+ T cells after cognate interaction with a single antigen from this complex parasite. The IL-4 produced rapidly by these CD4+ T cells induces within 48 hours a state of unresponsiveness to IL-12 among parasite-specific CD4+ T cell precursors by downregulating the IL-12 receptor beta 2 chain expression.
Resumo:
SUMMARY Interest in developing intervention strategies against malaria by targeting the liver stage of the Plasmodium life cycle has been fueled by studies which show that sterile protective immunity can be achieved by immunization with radiation-attenuated sporozoites. Anti-malarial drugs and insecticides have been widely used to control the disease, but in the hope of developing a more cost-effective intervention strategy, vaccine development has taken centre stage in malaria research. There is currently no vaccine against malaria. Attenuated sporozoite-induced immunity is achieved by antibodies and T cells against malaria liver stage antigens, the most abundant being the circumsporozoite protein (CSP), and many vaccine formulations aim at mimicking this immunity. However, the mechanisms by which the antibody and T cell immune responses are generated after infection by sporozoites, or after immunization with different vaccine formulations are still not well understood. The first part of this work aimed at determining the ability of primary hepatocytes from BALB/c mice to process and present CSP-derived peptides after infection with P. berghei sporozoites. Both infected hepatocytes and those traversed by sporozoites during migration were found to be capable of processing and presenting the CSP to specific CD8+ T cells in vitro. The pathway of processing and presentation involved the proteasome, aspartic proteases and transport through a post-Endoplasmic Reticulum (ER) compartment. These results suggest that in vivo, infected hepatocytes contribute to the elicitation and expansion of a T cell response. In the second part, the antibody responses of CB6F1 mice to synthetic peptides corresponding to the N- and C-terminal domains of P. berghei and P. falciparum CS proteins were characterized. Mice were immunized with single peptides or a combination of N- and C-terminal peptides. The peptides were immunogenic in mice and the antisera generated could recognize the native CSP on the sporozoite surface. Antisera generated against the N-terminal peptides or against the combinations inhibited sporozoite invasion of hepatocytes in vitro. In vivo, more mice immunized with single P. berghei peptides were protected from infection upon a challenge with P. berghei sporozoites, than mice immunized with a combination of N- and C-terminal peptides. Furthermore, P. falciparum N-terminal peptides were recognized by serum samples from people living in malaria-endemic areas. Importantly, recognition of a peptide from the N-terminal fragment of the P. falciparum CSP by sera from children living in a malaria-endemic region was associated with protection from disease. These results underline the potential of using such peptides as malaria vaccine candidates. RESUME L'intérêt de développer des stratégies d'intervention contre la malaria ciblant le stade pré-erythrocytaire a été alimenté par des études qui montrent qu'il est possible d'obtenir une immunité par l'injection de sporozoites irradiés. Les médicaments et les insecticides anti-paludiques ont été largement utilisés pour contrôler la maladie, mais dans l'espoir de développer une stratégie d'intervention plus rentable, le développement de vaccins a été placé au centre des recherches actuelles contre la malaria. A l'heure actuelle, il n'existe aucun vaccin contre la malaria. L'immunité induite par les sporozoites irradiés est due à l'effet combiné d'anticorps et de cellules T qui agissent contre les antigènes du stade hépatique dont le plus abondant est la protéine circumsporozoite (CSP). Beaucoup de formulations de vaccin visent à imiter l'immunité induite par les sporozoites irradiés. Cependant, les mécanismes par lesquels les anticorps et les cellules T sont génerés après infection par les sporozoites ou après immunisation avec des formulations de vaccin ne sont pas bien compris. La première partie de ce travail a visé à déterminer la capacité de hépatocytes primaires provenant de souris BALB/c à "processer" et à présenter des peptides dérivés de la CSP, après infection par des sporozoites de Plasmodium berghei. Nous avons montré que in vitro, les hépatocytes infectés et ceux traversés par les sporozoites pendant leur migration étaient capables de "processer" et de présenter la CSP aux cellules T CD8+ spécifiques. La voie de présentation implique le protéasome, les protéases de type aspartique et le transport à travers un compartiment post-reticulum endoplasmique. Ces résultats suggèrent que in vivo, les hépatocytes infectés contribuent à l'induction et à l'expansion d'une réponse immunitaire spécifique aux cellules T. Dans la deuxième partie, nous avons caractérisé les réponses anticorps chez les souris de la souche CB6F1 face aux peptides N- et C-terminaux des protéines circumsporozoites de Plasmodium berghei et Plasmodium falciparum. Les souris ont été immunisées avec les peptides individuellement ou en combinaison. Les peptides utilisés étaient immunogéniques chez les souris, et les anticorps produits pouvaient reconnaître la protéine CSP native à la surface des sporozoites. In vitro, les sera contre les peptides N-teminaux et les combinaisons étaient capables d'inhiber l'invasion de hépatocytes par les sporozoites. In vivo, plus de souris immunisées avec les peptides individuels de la CSP de P. berghei étaient protégées contre la malaria que les souris immunisées avec une combinaison de peptides N- et C-terminaux. De plus, les peptides N-terminaux de la CSP de P. falciparum ont été reconnus par les sera de personnes vivant dans des régions endémiques pour la malaria. Il est intéressant de voir que la reconnaissance d'un peptide N-terminal de P. falciparum par des sera d'enfants habitant dans des régions endémiques était associé à la protection contre la maladie. Ces résultats soulignent le potentiel de ces peptides comme candidats-vaccin contre la malaria.
Resumo:
Despite their limited proliferation capacity, regulatory T cells (T(regs)) constitute a population maintained over the entire lifetime of a human organism. The means by which T(regs) sustain a stable pool in vivo are controversial. Using a mathematical model, we address this issue by evaluating several biological scenarios of the origins and the proliferation capacity of two subsets of T(regs): precursor CD4(+)CD25(+)CD45RO(-) and mature CD4(+)CD25(+)CD45RO(+) cells. The lifelong dynamics of T(regs) are described by a set of ordinary differential equations, driven by a stochastic process representing the major immune reactions involving these cells. The model dynamics are validated using data from human donors of different ages. Analysis of the data led to the identification of two properties of the dynamics: (1) the equilibrium in the CD4(+)CD25(+)FoxP3(+)T(regs) population is maintained over both precursor and mature T(regs) pools together, and (2) the ratio between precursor and mature T(regs) is inverted in the early years of adulthood. Then, using the model, we identified three biologically relevant scenarios that have the above properties: (1) the unique source of mature T(regs) is the antigen-driven differentiation of precursors that acquire the mature profile in the periphery and the proliferation of T(regs) is essential for the development and the maintenance of the pool; there exist other sources of mature T(regs), such as (2) a homeostatic density-dependent regulation or (3) thymus- or effector-derived T(regs), and in both cases, antigen-induced proliferation is not necessary for the development of a stable pool of T(regs). This is the first time that a mathematical model built to describe the in vivo dynamics of regulatory T cells is validated using human data. The application of this model provides an invaluable tool in estimating the amount of regulatory T cells as a function of time in the blood of patients that received a solid organ transplant or are suffering from an autoimmune disease.