874 resultados para CARDIOPULMONARY OXIDATIVE STRESS


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Caenorhabditis elegans has recently been developed as a model system to study both pathogen virulence mechanisms and host defense responses. We have shown that C. elegans produces reactive oxygen species (ROS) in response to exposure to the important Gram-positive, noscomial pathogen, Enterococcus faecalis. We have also shown evidence of oxidative stress and upregulation of stress response after exposure to the pathogen. As in mammalian systems, this work shows that production of ROS for innate immune functions occurs via an NADPH oxidase. Specifically, reducing expression of a dual oxidase, Ce-duox1/BLI-3 causes a decrease in ROS production in response to E. faecalis. We also present evidence that reduction of expression of Ce-duox1/BLI-3 increases susceptibility to this pathogen, specifically when expression is reduced in the intestine and the hypodermis. This dual oxidase has previously been localized to the hypodermis, but we show that it is additionally localized to the intestine of C. elegans. To further demonstrate the protective effects of the pathogen-induced ROS production, we demonstrate that antioxidants that scavenge ROS, increase the sensitivity of the nematode to the infection, in stark contrast to their longevity-promoting effects under non-pathogenic conditions. In conclusion, we postulate that the generation of ROS by NADPH oxidases in the barrier epithelium is an ancient, highly conserved innate immune defense mechanism.^

Relevância:

90.00% 90.00%

Publicador:

Resumo:

One of the reasons for animals not to grow as fast as they potentially could is that fast growth has been shown to be associated with reduced lifespan. However, we are still lacking a clear description of the reality of growth-dependent modulation of ageing mechanisms in wild animals. Using the particular growth trajectory of small king penguin chicks naturally exhibiting higher-than-normal growth rate to compensate for the winter break, we tested whether oxidative stress and telomere shortening are related to growth trajectories. Plasma antioxidant defences, oxidative damage levels and telomere length were measured at the beginning and at the end of the post-winter growth period in three groups of chicks (small chicks, which either passed away or survived the growth period, and large chicks). Small chicks that died early during the growth period had the highest level of oxidative damage and the shortest telomere lengths prior to death. Here, we show that small chicks that grew faster did it at the detriment of body maintenance mechanisms as shown by (i) higher oxidative damage and (ii) accelerated telomere loss. Our study provides the first evidence for a mechanistic link between growth and ageing rates under natural conditions.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Water stress (WS) slows growth and photosynthesis (An), but most knowledge comes from short-time studies that do not account for longer term acclimation processes that are especially relevant in tree species. Using two Eucalyptus species that contrast in drought tolerance, we induced moderate and severe water deficits by withholding water until stomatal conductance (gsw) decreased to two pre-defined values for 24 d, WS was maintained at the target gsw for 29 d and then plants were re-watered. Additionally, we developed new equations to simulate the effect on mesophyll conductance (gm) of accounting for the resistance to refixation of CO2. The diffusive limitations to CO2, dominated by the stomata, were the most important constraints to An. Full recovery of An was reached after re-watering, characterized by quick recovery of gm and even higher biochemical capacity, in contrast to the slower recovery of gsw. The acclimation to long-term WS led to decreased mesophyll and biochemical limitations, in contrast to studies in which stress was imposed more rapidly. Finally, we provide evidence that higher gm under WS contributes to higher intrinsic water-use efficiency (iWUE) and reduces the leaf oxidative stress, highlighting the importance of gm as a target for breeding/genetic engineering.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Funding This work was supported by grants from the French Ministry of Research (PhD fellowship to CR), the University of Aberdeen (stipend to CR), the CNRS (PICS grant to BD), the L’Oréal Foundation-UNESCO “For Women in Science” program (fellowship to CR), the Région Rhône-Alpes (student mobility grant CMIRA Explora’doc to CR), the Rectors’ Conference of the Swiss Universities (mobility grant to CR), the Fédération de Recherche 41 BioEnvironnement et Santé (training grant to CR), and the Journal of Experimental Biology (travel grant to CR).

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The mechanisms that cause aging are not well understood. The oxidative stress hypothesis proposes that the changes associated with aging are a consequence of random oxidative damage to biomolecules. We hypothesized that oxidation of specific proteins is critical in controlling the rate of the aging process. Utilizing an immunochemical probe for oxidatively modified proteins, we show that mitochondrial aconitase, an enzyme in the citric acid cycle, is a specific target during aging of the housefly. The oxidative damage detected immunochemically was paralleled by a loss of catalytic activity of aconitase, an enzyme activity that is critical in energy metabolism. Experimental manipulations which decrease aconitase activity should therefore cause a decrease in life-span. This expected decrease was observed when flies were exposed to hyperoxia, which oxidizes aconitase, and when they were given fluoroacetate, an inhibitor of aconitase. The identification of a specific target of oxidative damage during aging allows for the assessment of the physiological age of a specific individual and provides a method for the evaluation of treatments designed to affect the aging process.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Fission yeast Spc1/StyI MAPK is activated by many environmental insults including high osmolarity, oxidative stress, and heat shock. Spc1/StyI is activated by Wis1, a MAPK kinase (MEK), which is itself activated by Wik1/Wak1/Wis4, a MEK kinase (MEKK). Spc1/StyI is inactivated by the tyrosine phosphatases Pyp1 and Pyp2. Inhibition of Pyp1 was recently reported to play a crucial role in the oxidative stress and heat shock responses. These conclusions were based on three findings: 1) osmotic, oxidative, and heat stresses activate Spc1/StyI in wis4 cells; 2) oxidative stress and heat shock activate Spc1/StyI in cells that express Wis1AA, in which MEKK consensus phosphorylation sites were replaced with alanine; and 3) Spc1/StyI is maximally activated in Δpyp1 cells. Contrary to these findings, we report: 1) Spc1/StyI activation by osmotic stress is greatly reduced in wis4 cells; 2) wis1-AA and Δwis1 cells have identical phenotypes; and 3) all forms of stress activate Spc1/StyI in Δpyp1 cells. We also report that heat shock, but not osmotic or oxidative stress, activate Spc1 in wis1-DD cells, which express Wis1 protein that has the MEKK consensus phosphorylation sites replaced with aspartic acid. Thus osmotic and oxidative stress activate Spc1/StyI by a MEKK-dependent process, whereas heat shock activates Spc1/StyI by a novel mechanism that does not require MEKK activation or Pyp1 inhibition.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Reactive oxygen species are common causes of cellular damages in all aerobic organisms. In Escherichia coli, the oxyR gene product is a positive regulator of the oxyR regulon that is induced in response to H2O2 stress. To identify genes involved in counteracting oxidative stress in plants, we transformed a delta oxyR mutant of E. coli with an Arabidopsis thaliana cDNA library and selected for clones that restored the ability of the delta oxyR mutant to grow in the presence of H2O2. Using this approach, we isolated a cDNA that has strong homology with the annexin super-gene family. The complemented mutant showed higher catalase activity. mRNA expression of the annexin gene in A. thaliana was higher in roots as compared with other organs and was also increased when the plants were exposed to H2O2 stress or salicylic acid. Based on the results presented in this study, we propose a novel physiological role for annexin in counteracting H2O2 stress.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The hypothesis that age-associated impairment of cognitive and motor functions is due to oxidative molecular damage was tested in the mouse. In a blind study, senescent mice (aged 22 months) were subjected to a battery of behavioral tests for motor and cognitive functions and subsequently assayed for oxidative molecular damage as assessed by protein carbonyl concentration in different regions of the brain. The degree of age-related impairment in each mouse was determined by comparison to a reference group of young mice (aged 4 months) tested concurrently on the behavioral battery. The age-related loss of ability to perform a spatial swim maze task was found to be positively correlated with oxidative molecular damage in the cerebral cortex, whereas age-related loss of motor coordination was correlated with oxidative molecular damage within the cerebellum. These results support the view that oxidative stress is a causal factor in brain senescence. Furthermore, the findings suggest that age-related declines of cognitive and motor performance progress independently, and involve oxidative molecular damage within different regions of the brain.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Alternative RNA polymerase sigma factors are a common means of coordinating gene regulation in bacteria. Using PCR amplification with degenerate primers, we identified and cloned a sigma factor gene, sigF, from Mycobacterium tuberculosis. The deduced protein encoded by sigF shows significant similarity to SigF sporulation sigma factors from Streptomyces coelicolor and Bacillus subtilis and to SigB, a stress-response sigma factor, from B. subtilis. Southern blot surveys with a sigF-specific probe identified cross-hybridizing bands in other slow-growing mycobacteria, Mycobacterium bovis bacille Calmette-Guérin (BCG) and Mycobacterium avium, but not in the rapid-growers Mycobacterium smegmatis or Mycobacterium abscessus. RNase protection assays revealed that M. tuberculosis sigF mRNA is not present during exponential-phase growth in M. bovis BCG cultures but is strongly induced during stationary phase, nitrogen depletion, and cold shock. Weak expression of M. tuberculosis sigF was also detected during late-exponential phase, oxidative stress, anaerobiasis, and alcohol shock. The specific expression of M. tuberculosis sigF during stress or stationary phase suggests that it may play a role in the ability of tubercle bacilli to adapt to host defenses and persist during human infection.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Trabalho Final do Curso de Mestrado Integrado em Medicina, Faculdade de Medicina, Universidade de Lisboa, 2014

Relevância:

90.00% 90.00%

Publicador:

Resumo:

At least 30 minutes of moderate-intensity physical activity accumulated on most, preferably all days is considered the minimum level necessary to reduce the risk of developing cardiovascular disease. Despite an unclear explanation, some epidemiological data paradoxically suggest that a very high volume of exercise is associated with a decrease in cardiovascular health. Although ultra-endurance exercise training has been shown to increase antioxidant defences (and therefore confer a protective effect against oxidative stress), an increase in oxidative stress may contribute to the development of atherosclerosis via oxidative modification of low-density lipoprotein (LDL). Research has also shown that ultra-endurance exercise is associated with acute cardiac dysfunction and injury, and these may also be related to an increase in free radical production. Longitudinal studies are needed to assess whether antioxidant defences are adequate to prevent LDL oxidation that may occur as a result of increased free radical production during very high volumes of exercise. In addition, this work will assist in understanding the accrued effect of repeated ultra-endurance exercise-induced myocardial damage.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The oxidative base lesion 8-oxo-deoxyguanosine (8-oxo-dG) has been identified in DNA isolated from normal tissue and may occur at elevated levels during disease. However, the use of phenol during DNA extraction may artificially elevate the detected levels of this lesion. Herein, we have performed a comparative methodological study using both pronase E and phenol extraction techniques; native or oxidatively stressed DNA was isolated to determine the validity of each extraction technique for the subsequent determination of 8-oxo-dG. Whilst the yields of DNA were comparable, after pronase E extraction there was no detectable induction of 8-oxo-dG in reextracted naked DNA or peripheral blood mononuclear cell DNA that had been oxidatively stressed. However, phenol extraction enhanced the basal levels of 8-oxo-dG detected, and also induced a significant increase in levels of the modified base after exposure to oxidative stress. The latter was dependent on the presence of foetal calf serum in the extracellular medium. We have confirmed that phenol extraction sensitises native DNA to subsequent oxidative damage. In addition, this work shows that the extent of sensitisation occurring during phenol extraction varies with the degree of oxidative damage already incurred and infers that labile guanine sites generated during oxidative stress may be detected as 8-oxo-dG residues after phenol extraction.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The expression of the protein crosslinking enzyme tissue transglutaminase (TG2, tTG), the ubiquitous member of transglutaminase family, can be regulated by multiple factors. Although it has been suggested that TG2 can be involved in apoptotic cell death, high levels of enzyme have also been associated with cell survival in response to different stimuli. Furthermore, evidence indicates that increases in TG2 production cause enzyme translocation to cell membrane. Cell stress can also lead to TG2 accumulation on the cell surface and in the extracellular matrix resulting in changes in cell-matrix interactions. Here, we discuss the underlying mechanisms of TG2 up-regulation induced by various stimuli including glutamate exposure, calcium influx, oxidative stress, UV, and inflammatory cytokines. These findings agree with a postulated role for transglutaminases in molecular mechanisms involved in several diseases suggesting that cross-linking reactions could be a relevant part of the biochemical changes observed in pathological conditions. © 2007 Springer-Verlag.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Mixed labelled folic acid was administerd to rats. Exposure to N2O was used to give an insight into the major route of scission within the monoglutamate pool, results suggest that THF formed during transport from the gut lumen to the plasma is the major route of scission within the gut. Peroxides in corn oil and arising as a result of lipid peroxidation and autoxidation increase catabolism of the monoglutamate pool and decrease incorporation of administered folates into the polyglutamate pool. It is suggested that peroxides may oxidise B12 resulting in inhibition of methionine synthetase, this results in diminished polyglutamation and increased urinary excretion of 5 CH3THF. Fats undergo peroxidation within tissues, the resulting peroxides increase catabolism of the polyglutamate pool. It is suggested that the NBT assay may reflect polyglutamate breakdown. Antioxidants such as vitamin E (and DES) decrease catabolism of the monoglutamate pool. Administration of DES resulted in changes similar to those observed during malignancy, it is suggested that these changes may precede the onset of tumour development. Vitamin E elevates brain DHPR activity. Since lowered DHPR levels and disturbed THB metabolism have been observed in aging and Down's syndrome it is proposed that vitamin E therapy may prove beneficial in situations where oxidative stress is increased. Brain DHPR activity was increased on administration of peroxides suggesting that in situations of oxidative stress (which may result in increased catabolism of THB) the salvage pathway may be stimulated and loss of THB minimised. N2O exposure had no effect on THB metabolism suggesting that the stimulatory role of 5 CH3THF is due to its role as a methyl donor.