797 resultados para BROWN ADIPOSE-TISSUE


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The molecular integration of nutrient-and pathogen-sensing pathways has become of great interest in understanding the mechanisms of insulin resistance in obesity. The double-stranded RNA-dependent protein kinase (PKR) is one candidate molecule that may provide cross talk between inflammatory and metabolic signaling. The present study was performed to determine, first, the role of PKR in modulating insulin action and glucose metabolism in physiological situations, and second, the role of PKR in insulin resistance in obese mice. We used Pkr(-/-) and Pkr(+/+) mice to investigate the role of PKR in modulating insulin sensitivity, glucose metabolism, and insulin signaling in liver, muscle, and adipose tissue in response to a high-fat diet. Our data show that in lean Pkr(-/-) mice, there is an improvement in insulin sensitivity, and in glucose tolerance, and a reduction in fasting blood glucose, probably related to a decrease in protein phosphatase 2A activity and a parallel increase in insulin-induced thymoma viral oncogene-1 (Akt) phosphorylation. PKR is activated in tissues of obese mice and can induce insulin resistance by directly binding to and inducing insulin receptor substrate (IRS)-1 serine307 phosphorylation or indirectly through modulation of c-Jun N-terminal kinase and inhibitor of kappa B kinase beta. Pkr(-/-) mice were protected from high-fat diet-induced insulin resistance and glucose intolerance and showed improved insulin signaling associated with a reduction in c-Jun N-terminal kinase and inhibitor of kappa B kinase beta phosphorylation in insulin-sensitive tissues. PKR may have a role in insulin sensitivity under normal physiological conditions, probably by modulating protein phosphatase 2A activity and serine-threonine kinase phosphorylation, and certainly, this kinase may represent a central mechanism for the integration of pathogen response and innate immunity with insulin action and metabolic pathways that are critical in obesity. (Endocrinology 153:5261-5274, 2012)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The adipose tissue expansion is accompanied by remodeling of extracellular matrix performed by matrix metalloproteinases (MMPs). Higher plasma and tissue MMP-9 levels are found in obese; therefore, we evaluated if the functional C-1562T polymorphism (rs3918242) located in promoter region of the MMP-9 gene is associated with obesity in women. We studied 112 lean and 114 obese women. Plasma MMP-9 and tissue inhibitor of MMP-9 (TIMP)-1 were measured using enzyme-linked immunosorbent assay. We found different genotype frequencies between lean and obese women (p = 0.008), prevailing T-allele in obese (2.3-fold). However, although obese women present higher levels of plasma MMP-9, lack of modulation by the polymorphism was found (all p > 0.05). Our findings suggest that C-1562T polymorphism may contribute to pathogenetic mechanisms involved in the development of obesity in women.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background & aims: Cachexia is associated with poor prognosis and shortened survival in cancer patients. Growing evidence points out to the importance of chronic systemic inflammation in the aetiology of this syndrome. In the recent past, chronic inflammation was considered to result from overexpression and release of pro-inflammatory factors. However, this conception is now the focus of debate, since the importance of a crescent number of pro-resolving agents in the dissolution of inflammation is now recognised - leading to the hypothesis that chronic inflammation occurs rather due to failure in the resolution process. We intend to put forward the possibility that this may also be occurring in cancer cachexia. Methods: Recent reviews on inflammation and cachexia, and on the factors involved in the resolution of inflammation are discussed. Results: The available information suggests that indeed, inflammation resolution failure may be present in cachexia and therefore we speculate on possible mechanisms. Conclusions: We emphasise the importance of studying resolution-related mechanisms in cancer cachexia and propose the opening of a new venue for cachexia treatment. (C) 2012 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

High consumption of polyunsaturated fatty acids, such as sunflower oil has been associated to beneficial effects in plasma lipid profile, but its role on inflammation and insulin resistance is not fully elucidated yet. We evaluated the effect of sunflower oil supplementation on inflammatory state and insulin resistance condition in HFD-induced obese mice. C57BL/ 6 male mice (8 weeks) were divided in four groups: (a) control diet (CD), (b) HFD, (c) CD supplemented with n-6 (CD + n-6), and (d) HFD supplemented with n-6 (HFD + n-6). CD + n-6 and HFD + n-6 were supplemented with sunflower oil by oral gavage at 2 g/ Kg of body weight, three times per week. CD and HFD were supplemented with water instead at the same dose. HFD induced whole andmuscle-specific insulin resistance associated with increased inflammatory markers in insulin-sensitive tissues andmacrophage cells. Sunflower oil supplementation was not efficient in preventing or reducing these parameters. In addition, the supplementation increased pro-inflammatory cytokine production by macrophages and tissues. Lipid profile, on the other hand, was improved with the sunflower oil supplementation in animals fed HFD. In conclusion, sunflower oil supplementation improves lipid profile, but it does not prevent or attenuate insulin resistance and inflammation induced by HFD in C57BL/ 6 mice.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Recent studies have implicated adiponectin and other adipocytokines in brain function, particularly in processes related to memory and cognition. Blood levels of adiponectin are reduced in patients with primary cognitive disorders, such as Alzheimer's disease and mild cognitive impairment, and in adult patients with major depression. The aim of the present study is to determine serum levels of adiponectin in a sample of elderly patients with major depressive disorder (MOD) as compared to healthy older adults, and to examine the correlations between adiponectin levels and parameters indicative of mood and cognitive state. We recruited fifty-one unmedicated outpatients with late-life depression (LLD) and 47 age-matched controls in this study. The diagnosis of MDD was made according to the DSM-IV criteria, and the severity of depressive episode was determined with the 21-item Hamilton Depression Scale (HORS). Cognitive state was ascertained with the Cambridge Cognitive Test (CAMCOG) and the Mini-Mental State Examination (MMSE). Serum concentrations of adiponectin were determined using a sandwich ELISA method. Serum levels of adiponectin were significantly reduced in individuals with LLD (F = p < 0.001). Adiponectin level remained significantly reduced in after controlling for BMI index, scores on the CAMCOG, MMSE and HDRS and educational level (p < 0.001). Adiponectin levels showed a negative correlation with HORS scores (r = -0.59, p < 0.001) and BMI index (r = -0.42, p < 0.001); and showed a positive correlation with CAMCOG (r = 0.34, p < 0.01) and MMSE scores (r = 0.20, p = 0.05). The availability of circulating adiponectin is reduced in older adults with major depression, with likely implications on cognitive and mood state. Additional studies are required to determine whether this abnormality pertains to the pathophysiology of geriatric depression per se, or is a consequence of the morbid state. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Electron densities of 33 samples of normal (adipose and fibroglangular) and neoplastic (benign and malignant) human breast tissues were determined through Compton scattering data using a mono-chromatic synchrotron radiation source and an energy dispersive detector. The area of Compton peaks was used to determine the electron densities of the samples. Adipose tissue exhibits the lowest values of electron density whereas malignant tissue the highest. The relationship with their histology was discussed. Comparison with previous results showed differences smaller than 4%. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Chronic intake of high-carbohydrate or high-lipid diets is a well-known insulin resistance inducer. This study investigates the immediate effect (1-6 h) of a carbohydrate-or lipid-enriched meal on insulin sensitivity. Fasted rats were refed with standard, carbohydrate-enriched (C), or lipid-enriched (L) meal. Plasma insulin, glucose, and non-esterified fatty acids (NEFA) were measured at 1, 2, 4, and 6 h of refeeding. The glucose-insulin index showed that either carbohydrates or lipids decreased insulin sensitivity at 2 h of refeeding. At this time point, insulin tolerance tests (ITTs) and glucose tolerance tests (GTTs) detected insulin resistance in C rats, while GTT confirmed it in L rats. Reduced glycogen and phosphorylated AKT and GSK3 content revealed hepatic insulin resistance in C rats. Reduced glucose uptake in skeletal muscle subjected to the fatty acid concentration that mimics the high NEFA level of L rats suggests insulin resistance in these animals is mainly in muscle. In conclusion, carbohydrate-or lipid-enriched meals acutely disrupt glycemic homeostasis, inducing a transient insulin resistance, which seems to involve liver and skeletal muscle, respectively. Thus, the insulin resistance observed when those types of diets are chronically consumed may be an evolution of repeated episodes of this transient insulin resistance.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Aims: Cytokines interfere with signaling pathways and mediators of vascular contraction. Endothelin-1 (ET-1) plays a major role on vascular dysfunction in conditions characterized by increased circulating levels of adipokines. In the present study we tested the hypothesis that the adipokine chemerin increases vascular contractile responses via activation of ET-1/ET-1 receptors-mediated pathways. Main methods: Male, 10-12 week-old Wistar rats were used. Endothelium-intact and endothelium-denuded aortic rings were incubated with chemerin (0.5 ng/mL or 5 ng/mL, for 1 or 24 h), and isometric contraction was recorded. Protein expression was determined by Western blotting. Key findings: Constrictor responses to phenylephrine (PE) and ET-1 were increased in vessels treated for 1 h with chemerin. Chemerin incubation for 24 h decreased PE contractile response whereas it increased the sensitivity to ET-1. Endothelium removal significantly potentiated chemerin effects on vascular contractile responses to PE and ET-1. Incubation with either an ERK1/2 inhibitor (PD98059) or ETA antagonist (BQ123) abolished chemerin effects on PE- and ET-1-induced vasoconstriction. Phosphorylation of MEK1/2 and ERK1/2 was significantly increased in vessels treated with chemerin for 1 and 24 h. Phosphorylation of these proteins was further increased in vessels incubated with ET-1 plus chemerin. ET-1 increased MEK1/2, ERK1/2 and MKP1 protein expression to values observed in vessels treated with chemerin. Significance: Chemerin increases contractile responses to PE and ET-1 via ERK1/2 activation. Our study contributes to a better understanding of the mechanisms by which the adipose tissue affects vascular function and, consequently, the vascular alterations present in obesity and related diseases. (c) 2012 Elsevier Inc. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

No ciclo estral de cadelas a fase luteínica, denominada diestro, compreende um período que varia de 60 a 100 dias em animais não-prenhes, caracterizado pela elevação plasmática de progesterona nos primeiros 20 dias pós ovulação (p.o). A adiponectina é a mais abundante proteína secretada pelo tecido adiposo, porém sua concentração plasmática diminui significativamente em alterações metabólicas como resistência insulínica e Diabetes mellitus tipo2, alterações descritas como relacionadas em algumas cadelas com o período de diestro. O objetivo do estudo foi determinar a expressão e imunolocalização do sistema adiponectina (adiponectina e seus receptores, adipoR1 e adipoR2) no corpo lúteo de cadelas ao longo do diestro, correlacionando-o ao perfil hormonal de 17β-estradiol e progesterona, assim como à expressão de um dos genes alvo do sistema, o PPAR-γ. Para realização do estudo foram coletados corpos lúteos de 28 cadelas durante ovariosalpingohisterectomia de eleição nos dias 10, 20, 30, 40, 50, 60 e 70 pós ovulação (o dia zero da ovulação foi considerado aquele no qual a concentração plasmática de progesterona atingiu 5ng/mL). Os corpos lúteos foram avaliados por imunohistoquímica para adiponectina e seus receptores e a expressão do RNAm do PPAR-γ por PCR em tempo real. A análise estatística da avaliação gênica foi realizada com o teste ANOVA, seguido por comparação múltipla Newman-Keuls. O sinal da adiponectina apresentou-se mais intenso até os primeiros 20 dias p.o, momento de regência da progesterona; houve queda gradativa após este período, coincidindo com a ascensão do 17β-estradiol, cujo pico foi notado próximo do dia 40 p.o. A queda marcante da adiponectina ocorreu após 50 dias p.o. O sinal do adipoR1 mostrou-se bem evidente até os 40 dias p.o e o do adipoR2 até os 50 dias p. o, decaindo posteriormente. Foi observada maior expressão do gene PPAR-γ aos 10, 30 e 70 dias p.o. Estes resultados mostram que a expressão protéica da adiponectina e de seus receptores se altera ao longo do diestro e que estas alterações podem estar relacionados às alterações hormonais e expressão do PPAR- γ, participando do mecanismo fisiológico de desenvolvimento, manutenção, atividade e regressão luteínica em cadelas.