947 resultados para Arc shaped stator induction machine
Resumo:
The design of machine foundations are done on the basis of two principal criteria viz., vibration amplitude should be within the permissible limits and natural frequency of machine-foundation-soil system should be away from the operating frequency (i.e. avoidance of resonance condition). In this paper the nondimensional amplitude factor M-m or M-r m and the nondimensional frequency factor a(o m) at resonance are related using elastic half space theory and is used as a new approach for a simplified design procedure for the design of machine foundations for all the modes of vibration fiz. vertical, horizontal, rocking and torsional for rigid base pressure distribution and weighted average displacement condition. The analysis show that one need not know the value of Poisson's ratio for rotating mass system for all the modes of vibration.
Resumo:
In this paper, we present a modified k - epsilon model capable of addressing turbulent weld-pool convection in a GMAW process, taking into account the morphology of the phase change interface during a Gas Metal Arc Welding (GMAW) process. A three-dimensional turbulence mathematical model has been developed to study the heat transfer and fluid flow within the weld pool by considering the combined effect of three driving forces, viz., buoyancy, Lorentz force and surface tension (Marangoni convection). Mass and energy transports by the droplets are considered through the thermal analysis of the electrode. The falling droplet's heat addition to the molten pool is considered to be a volumetric heat source distributed in an imaginary cylindrical cavity ("cavity model") within the weld pool. This nature of heat source distribution takes into account the momentum and the thermal, energy of the falling droplets. The numerically predicted weld pool dimensions both from turbulence and laminar models are then compared with the experimental post-weld results sectioned across the weld axis. The above comparison enables us to analyze the overall effects of turbulent convection on the nature of heat and fluid flow and hence on the weld pool shape/size during the arc welding processes.
Resumo:
A topology for voltage-space phasor generation equivalent to a five-level inverter for an open-end winding induction motor is presented. The open-end winding induction motor is fed from both ends by two three-level inverters. The three-level inverters are realised by cascading two two-level inverters. This inverter scheme does not experience neutral-point fluctuations. Of the two three-level inverters only one will be switching at any instant in the lower speed ranges. In the multilevel carrier-based SPWM used for the proposed drive, a progressive discrete DC bias depending on the speed range is given to the reference wave to reduce the inverter switchings. The drive is implemented and tested with a 1 HP open-end winding induction motor and experimental results are presented.
Resumo:
In this paper, knowledge-based approach using Support Vector Machines (SVMs) are used for estimating the coordinated zonal settings of a distance relay. The approach depends on the detailed simulation studies of apparent impedance loci as seen by distance relay during disturbance, considering various operating conditions including fault resistance. In a distance relay, the impedance loci given at the relay location is obtained from extensive transient stability studies. SVMs are used as a pattern classifier for obtaining distance relay co-ordination. The scheme utilizes the apparent impedance values observed during a fault as inputs. An improved performance with the use of SVMs, keeping the reach when faced with different fault conditions as well as system power flow changes, are illustrated with an equivalent 265 bus system of a practical Indian Western Grid.
Resumo:
This study examines the thermal efficiency of the operation of arc furnace and the effects of harmonics and voltage dips of a factory located near Bangkok. It also attempts to find ways to improve the performance of the arc furnace operation and minimize the effects of both harmonics and voltage dips. A dynamic model of the arc furnace has been developed incorporating both electrical and thermal characteristics. The model can be used to identify potential areas for improvement of the furnace and its operation. Snapshots of waveforms and measurement of RMS values of voltage, current and power at the furnace, at other feeders and at the point of common coupling were recorded. Harmonic simulation program and electromagnetic transient simulation program were used in the study to model the effects of harmonics and voltage dips and to identify appropriate static and dynamic filters to minimize their effects within the factory. The effects of harmonics and voltage dips were identified in records taken at the point of common coupling of another factory supplied by another feeder of the same substation. Simulation studies were made to examine the results on the second feeder when dynamic filters were used in the factory which operated the arc furnace. The methodology used and the mitigation strategy identified in the study are applicable to general situation in a power distribution system where an arc furnace is a part of the load of a customer
Resumo:
In the present study, the mechanical behaviour of CSM (chopped strand mat)-based GFRC (glass fibre-reinforced composite) plates with single and multiple hemispheres under compressive loads has been investigated both experimentally and numerically. The basic stress-strain behaviours arc identified with quasi-static tests on two-ply coupon laminates and short cylinders, and these are followed up with compressive tests in a UTM (universal testing machine) on single- and multiple-hemisphere plates. The ability of an explicit LS-DYNA solver in predicting the complex material behaviour of composite hemispheres, including failure, is demonstrated. The relevance and scalability of the present class of structural components as `force-multipliers' and `energy-multipliers' have been justified by virtue of findings that as the number of hemispheres in a panel increased from one to four, peak load and average absorbed energy rose by factors of approximately four and six, respectively. The performance of a composite hemisphere has been compared to similar-sized steel and aluminium hemispheres, and the former is found to be of distinctly higher specific energy than the steel specimen. A simulation-based study has also been carried out on a composite 2 x 2-hemisphere panel under impact loads and its behaviour approaching that of an ideal energy absorber has been predicted. In summary, the present investigation has established the efficacy of composite plates with hemispherical force multipliers as potential energy-absorbing countermeasures and the suitability of CAE (computer-aided engineering) for their design.
Resumo:
The present work is aimed at studying the influence of electrolyte chemistry on the voltage-time (V-T) response characteristics, phase structure, surface morphology, film growth rate and corrosion properties of titania films fabricated by micro arc oxidation (MAO) on Cp Ti. The titania films were developed with a sodium phosphate based reference electrolyte comprising the additives such as sodium carbonate (Na2CO3), sodium nitrite (NaNO2) and urea (CO(NH2)(2)). The phase composition, surface morphology, elemental composition and thickness of the films were assessed by X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) techniques. The corrosion characteristics of the fabricated films were studied under Kokubo simulated body fluid (SBF) condition by potentiodynamic polarization, long term potential and linear polarization resistance (LPR) measurements and electrochemical impedance spectroscopy (EIS) methods. In addition, the corrosion characteristics of the grown films were analyzed by EIS curve fitting and equivalent circuit modeling. Salt spray test (SST) as per ASTM B 117 standard was also conducted to verify the corrosion resistance of the grown films. The XRD results showed that the titania films were composed of both anatase and rutile phases at different proportions. Besides, the films grown in carbonate and nitrite containing electrolyte systems showed an enhanced growth of their rutile phase in the 1 0 1] direction which could be attributed to the modifications introduced in the growth process by the abundant oxygen available during the process. The SEM-EDX and elemental mapping results showed that the respective electrolyte borne elements were incorporated and distributed uniformly in all the films. Among all the grown films under study, the film developed in carbonate containing electrolyte system exhibited considerably improved corrosion resistance due to suitable modifications in its structural and morphological characteristics. The rate of anatase to rutile phase transformation and the rutile growth direction were strongly influenced by the abundant oxidizing species available during the film growth process. (C) 2012 Elsevier B. V. All rights reserved.
Resumo:
This paper proposes a current-error space-vector-based hysteresis controller with online computation of boundary for two-level inverter-fed induction motor (IM) drives. The proposed hysteresis controller has got all advantages of conventional current-error space-vector-based hysteresis controllers like quick transient response, simplicity, adjacent voltage vector switching, etc. Major advantage of the proposed controller-based voltage-source-inverters-fed drive is that phase voltage frequency spectrum produced is exactly similar to that of a constant switching frequency space-vector pulsewidth modulated (SVPWM) inverter. In this proposed hysteresis controller, stator voltages along alpha- and beta-axes are estimated during zero and active voltage vector periods using current errors along alpha- and beta-axes and steady-state model of IM. Online computation of hysteresis boundary is carried out using estimated stator voltages in the proposed hysteresis controller. The proposed scheme is simple and capable of taking inverter upto six-step-mode operation, if demanded by drive system. The proposed hysteresis-controller-based inverter-fed drive scheme is experimentally verified. The steady state and transient performance of the proposed scheme is extensively tested. The experimental results are giving constant frequency spectrum for phase voltage similar to that of constant frequency SVPWM inverter-fed drive.
Resumo:
In this paper, we address a scheduling problem for minimizing total weighted flowtime, observed in automobile gear manufacturing. Specifically, the bottleneck operation of the pre-heat treatment stage of gear manufacturing process has been dealt with in scheduling. Many real-life scenarios like unequal release times, sequence dependent setup times, and machine eligibility restrictions have been considered. A mathematical model taking into account dynamic starting conditions has been proposed. The problem is derived to be NP-hard. To approach the problem, a few heuristic algorithms have been proposed. Based on planned computational experiments, the performance of the proposed heuristic algorithms is evaluated: (a) in comparison with optimal solution for small-size problem instances and (b) in comparison with the estimated optimal solution for large-size problem instances. Extensive computational analyses reveal that the proposed heuristic algorithms are capable of consistently yielding near-statistically estimated optimal solutions in a reasonable computational time.
Resumo:
Bulk metallic glass (BMG) matrix composites with crystalline dendrites as reinforcements exhibit a wide variance in their microstructures (and thus mechanical properties), which in turn can be attributed to the processing route employed, which affects the size and distribution of the dendrites. A critical investigation on the microstructure and tensile properties of Zr/Ti-based BMG composites of the same composition, but produced by different routes, was conducted so as to identify ``structure-property'' connections in these materials. This was accomplished by employing four different processing methods-arc melting, suction casting, semi-solid forging and induction melting on a water-cooled copper boat-on composites with two different dendrite volume fractions, V-d. The change in processing parameters only affects microstructural length scales such as the interdendritic spacing, lambda, and dendrite size, delta, whereas compositions of the matrix and dendrite are unaffected. Broadly, the composite's properties are insensitive to the microstructural length scales when V-d is high (similar to 75%), whereas they become process dependent for relatively lower V-d (similar to 55%). Larger delta in arc-melted and forged specimens result in higher ductility (7-9%) and lower hardening rates, whereas smaller dendrites increase the hardening rate. A bimodal distribution of dendrites offers excellent ductility at a marginal cost of yield strength. Finer lambda result in marked improvements in both ductility and yield strength, due to the confinement of shear band nucleation sites in smaller volumes of the glassy phase. Forging in the semi-solid state imparts such a microstructure. (c) 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
Linear quadratic stabilizers are well-known for their superior control capabilities when compared to the conventional lead-lag power system stabilizers. However, they have not seen much of practical importance as the state variables are generally not measurable; especially the generator rotor angle measurement is not available in most of the power plants. Full state feedback controllers require feedback of other machine states in a multi-machine power system and necessitate block diagonal structure constraints for decentralized implementation. This paper investigates the design of Linear Quadratic Power System Stabilizers using a recently proposed modified Heffron-Phillip's model. This model is derived by taking the secondary bus voltage of the step-up transformer as reference instead of the infinite bus. The state variables of this model can be obtained by local measurements. This model allows a coordinated linear quadratic control design in multi machine systems. The performance of the proposed controller has been evaluated on two widely used multi-machine power systems, 4 generator 10 bus and 10 generator 39 bus systems. It has been observed that the performance of the proposed controller is superior to that of the conventional Power System Stabilizers (PSS) over a wide range of operating and system conditions.
Resumo:
This study proposes an inverter circuit topology capable of generating multilevel dodecagonal (12-sided polygon) voltage space vectors by the cascaded connection of two-level and three-level inverters. By the proper selection of DC-link voltages and resultant switching states for the inverters, voltage space vectors whose tips lie on three concentric dodecagons, are obtained. A rectifier circuit for the inverter is also proposed, which significantly improves the power factor. The topology offers advantages such as the complete elimination of the fifth and seventh harmonics in phase voltages and an extension of the linear modulation range. In this study, a simple method for the calculation of pulse width modulation timing was presented along with extensive simulation and experimental results in order to validate the proposed concept.