995 resultados para Amorphous silicon films


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A model of iron carbonate (FeCO3) film growth is proposed, which is an extension of the recent mechanistic model of carbon dioxide (CO2) corrosion by Nesic, et al. In the present model, the film growth occurs by precipitation of iron carbonate once saturation is exceeded. The kinetics of precipitation is dependent on temperature and local species concentrations that are calculated by solving the coupled species transport equations. Precipitation tends to build up a layer of FeCO3 on the surface of the steel and reduce the corrosion rate. On the other hand, the corrosion process induces voids under the precipitated film, thus increasing the porosity and leading to a higher corrosion rate. Depending on the environmental parameters such as temperature, pH, CO2 partial pressure, velocity, etc., the balance of the two processes can lead to a variety of outcomes. Very protective films and low corrosion rates are predicted at high pH, temperature, CO2 partial pressure, and Fe2+ ion concentration due to formation of dense protective films as expected. The model has been successfully calibrated against limited experimental data. Parametric testing of the model has been done to gain insight into the effect of various environmental parameters on iron carbonate film formation. The trends shown in the predictions agreed well with the general understanding of the CO2 corrosion process in the presence of iron carbonate films. The present model confirms that the concept of scaling tendency is a good tool for predicting the likelihood of protective iron carbonate film formation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Langmuir-Blodgett films of the tetracationic porphyrin tetrakis( octadecyl-4-pyridinium) porphinatozinc(ii) bromide transferred from subphases containing different salts were studied using X-ray photoelectron spectroscopy (XPS) and X-ray reflectometry. In contrast to previous results at the air/water interface, we found that the porphyrin adopted a fixed conformation at the air/solid interface regardless of composition of the subphase or whether the films were transferred above or below the primary phase transition. This conformation was assigned to the formation of an interdigitated bilayer structure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using synchrotron X-ray grazing incidence diffraction, superlattice structures have been observed to develop in Langmuir-Blodgett films of cadmium arachidate as the temperature is raised. The previously reported superstructure in the stacked lamellae at room temperature changes at about 70 degreesC and there are further changes at about 90 and 103 degreesC before the major phase transition from stacked lamellae to hexagonally packed rods occurs at 107 degreesC (Langmuir 1997, 13, 1602). Between 70 and 103 degreesC there is a 1 x 10 one-dimensional in-plane superstructure, which is commensurate with the local structure and has an interlayer shift along [01] by a distance of b (of the local structure) at lower temperatures, and a further shift at about 90 degreesC. At lower (

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A review of spontaneous rupture in thin films with tangentially immobile interfaces is presented that emphasizes the theoretical developments of film drainage and corrugation growth through the linearization of lubrication theory in a cylindrical geometry. Spontaneous rupture occurs when corrugations from adjacent interfaces become unstable and grow to a critical thickness. A corrugated interface is composed of a number of waveforms and each waveform becomes unstable at a unique transition thickness. The onset of instability occurs at the maximum transition thickness, and it is shown that only upper and lower bounds of this thickness can be predicted from linear stability analysis. The upper bound is equivalent to the Freakel criterion and is obtained from the zeroth order approximation of the H-3 term in the evolution equation. This criterion is determined solely by the film radius, interfacial tension and Hamaker constant. The lower bound is obtained from the first order approximation of the H-3 term in the evolution equation and is dependent on the film thinning velocity A semi-empirical equation, referred to as the MTR equation, is obtained by combining the drainage theory of Manev et al. [J. Dispersion Sci. Technol., 18 (1997) 769] and the experimental measurements of Radoev et al. [J. Colloid Interface Sci. 95 (1983) 254] and is shown to provide accurate predictions of film thinning velocity near the critical thickness of rupture. The MTR equation permits the prediction of the lower bound of the maximum transition thickness based entirely on film radius, Plateau border radius, interfacial tension, temperature and Hamaker constant. The MTR equation extrapolates to Reynolds equation under conditions when the Plateau border pressure is small, which provides a lower bound for the maximum transition thickness that is equivalent to the criterion of Gumerman and Homsy [Chem. Eng. Commun. 2 (1975) 27]. The relative accuracy of either bound is thought to be dependent on the amplitude of the hydrodynamic corrugations, and a semiempirical correlation is also obtained that permits the amplitude to be calculated as a function of the upper and lower bound of the maximum transition thickness. The relationship between the evolving theoretical developments is demonstrated by three film thickness master curves, which reduce to simple analytical expressions under limiting conditions when the drainage pressure drop is controlled by either the Plateau border capillary pressure or the van der Waals disjoining pressure. The master curves simplify solution of the various theoretical predictions enormously over the entire range of the linear approximation. Finally, it is shown that when the Frenkel criterion is used to assess film stability, recent studies reach conclusions that are contrary to the relevance of spontaneous rupture as a cell-opening mechanism in foams. (C) 2003 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In recent years, the application of silicon (Si) in crops, including coffee, has become a common practice. The objective of this study was to assess the silicon uptake by coffee seedlings and its effects on plant growth, water and macro and micronutrient uptake. The research was conducted using nutrient solution in a greenhouse at the Departamento de Fitotecnia da Universidade Federal de Viçosa, in a completely randomized design with two treatments (with and without silicon) and three replications. Each plot consisted of three plants grown in a 800 mL vessel containing the treatment solutions. At every three days, water consumption, the concentration of OH - and the depletion of Si and K were assessed in the nutrient solutions. After 33 days, the plants were assessed with regard to their fresh and dry weight of leaves, roots and stem, shoot height and total length of the plant (shoot and root). Number of leaves and internodes, and the content and accumulation of silicon, macro, and micronutrients were also determined. The consumption of water, the amount of potassium uptake and, biomass accumulation were greater in plants grown in solution without silicon addition. However, the concentration of OH- in the solution and the amount of silicon uptake were greater in plants grown in solution with added silicon. Silicon accumulation was greater in leaves than in stem and roots. Silicon decreased coffee plant accumulation of phosphorus, potassium, calcium, zinc, copper and iron.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lychee (Litchi chinensis Sonn.) has a high commercial value; however, it has a short shelf-life because of its rapid pericarp browning. The objective of this study was to evaluate the shelf-life of 'Bengal' lychee fruits stored after treatment with hydrochloric acid and citric acid, associated with cassava starch and plastic packaging. Uniformly red pericarp fruits were submitted to treatments: 1-(immersion in citric acid 100 mM for 5 minutes + cassava starch 30 g L-1 for 5 minutes), 2-(immersion in hydrochloric acid 1 M for 2 minutes + starch cassava 30 g L-1 for 5 minutes), 3-(immersion in citric acid 100 mM for 5 minutes + polyvinyl chloride film (PVC, 14 µm thick)) and 4-(immersion in hydrochloric acid 1 M for 2 minutes + PVC film). During 20 days, the fruits were evaluated for mass loss, pericarp color, pH, soluble solids and titratable acidity, vitamin C of the pulp and pericarp and activities of polyphenol oxidase and peroxidase of the pericarp. The treatment with hydrochloric acid associated with PVC was the most effective in maintaining the red color of the pericarp for a period of 20 days and best preservation of the fruit. The cassava starch associated with citric acid, and hydrochloric acid did not reduce the mass loss and did not prevent the browning of lychee fruit pericarp.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polymeric materials have become the reference material for high reliability and performance applications. However, their performance in service conditions is difficult to predict, due in large part to their inherent complex morphology, which leads to non-linear and anisotropic behavior, highly dependent on the thermomechanical environment under which it is processed. In this work, a multiscale approach is proposed to investigate the mechanical properties of polymeric-based material under strain. To achieve a better understanding of phenomena occurring at the smaller scales, the coupling of a finite element method (FEM) and molecular dynamics (MD) modeling, in an iterative procedure, was employed, enabling the prediction of the macroscopic constitutive response. As the mechanical response can be related to the local microstructure, which in turn depends on the nano-scale structure, this multiscale approach computes the stress-strain relationship at every analysis point of the macro-structure by detailed modeling of the underlying micro- and meso-scale deformation phenomena. The proposed multiscale approach can enable prediction of properties at the macroscale while taking into consideration phenomena that occur at the mesoscale, thus offering an increased potential accuracy compared to traditional methods.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

All essential nutrients can affect the incidence and severity of plant diseases. Although silicon (Si) is not considered as an essential nutrient for plants, it stands out for its potential to decrease disease intensity in many crops. The mechanism of Si action in plant resistance is still unclear. Si deposition in plant cell walls raised the hypothesis of a possible physical barrier to pathogen penetration. However, the increased activity of phenolic compounds, polyphenol oxidases and peroxidases in plants treated with Si demonstrates the involvement of this element in the induction of plant defense responses. The studies examined in this review address the role of Si in disease control and the possible mechanisms involved in the mode of Si action in disease resistance in plants.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper discusses the results of a large survey conducted in 2006 on the perception Portuguese movies’ audiences have of their own locally produced films. Audience’s reception of locally produced films is marked by the rejection of the consumption of these objects as a result of a bias against locally produced cultural artefacts. The prejudice shaping this relationship, not only demands for new cultural and social politics, but also raises a number of questions on local and European media industry’s ability to cope with its own audiences’ expectations. Finally, broader considerations are made on the different ways contemporary audiences are shaping media technologies, and their respective cultural artefacts, through their own use and reception of those technologies and artefacts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article reports on a-Si:H-based low-leakage blue-enhanced photodiodes for dual-screen x-ray imaging detectors. Doped nanocrystalline silicon was incorporated in both the n- and p-type regions to reduce absorption losses for light incoming from the top and bottom screens. The photodiode exhibits a dark current density of 900 pA/cm(2) and an external quantum efficiency up to 90% at a reverse bias of 5 V. In the case of illumination through the tailored p-layer, the quantum efficiency of 60% at a 400 nm wavelength is almost double that for the conventional a-Si:H n-i-p photodiode.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A visible/near-infrared optical sensor based on an ITO/SiOx/n-Si structure with internal gain is presented. This surface-barrier structure was fabricated by a low-temperature processing technique. The interface properties and carder transport were investigated from dark current-voltage and capacitance-voltage characteristics. Examination of the multiplication properties was performed under different light excitation and reverse bias conditions. The spectral and pulse response characteristics are analysed. The current amplification mechanism is interpreted by the control of electron current by the space charge of photogenerated holes near the SiOx/Si interface. The optical sensor output characteristics and some possible device applications are presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Amorphous glass/ZnO-Al/p(a-Si:H)/i(a-Si:H)/n(a-Si1-xCx:H)/Al imagers with different n-layer resistivities were produced by plasma enhanced chemical vapour deposition technique (PE-CVD). An image is projected onto the sensing element and leads to spatially confined depletion regions that can be readout by scanning the photodiode with a low-power modulated laser beam. The essence of the scheme is the analog readout, and the absence of semiconductor arrays or electrode potential manipulations to transfer the information coming from the transducer. The influence of the intensity of the optical image projected onto the sensor surface is correlated with the sensor output characteristics (sensitivity, linearity blooming, resolution and signal-to-noise ratio) are analysed for different material compositions (0.5 < x < 1). The results show that the responsivity and the spatial resolution are limited by the conductivity of the doped layers. An enhancement of one order of magnitude in the image intensity signal and on the spatial resolution are achieved at 0.2 mW cm(-2) light flux by decreasing the n-layer conductivity by the same amount. A physical model supported by electrical simulation gives insight into the image-sensing technique used.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chromia (Cr2O3) has been extensively explored for the purpose of developing widespread industrial applications, owing to the convergence of a variety of mechanical, physical and chemical properties in one single oxide material. Various methods have been used for large area synthesis of Cr2O3 films. However, for selective area growth and growth on thermally sensitive materials, laser-assisted chemical vapour deposition (LCVD) can be applied advantageously. Here we report on the growth of single layers of pure Cr2O3 onto sapphire substrates at room temperature by low pressure photolytic LCVD, using UV laser radiation and Cr(CO)(6) as chromium precursor. The feasibility of the LCVD technique to access selective area deposition of chromia thin films is demonstrated. Best results were obtained for a laser fluence of 120 mJ cm(-2) and a partial pressure ratio of O-2 to Cr(CO)(6) of 1.0. Samples grown with these experimental parameters are polycrystalline and their microstructure is characterised by a high density of particles whose size follows a lognormal distribution. Deposition rates of 0.1 nm s(-1) and mean particle sizes of 1.85 mu m were measured for these films. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The scaling exponent of 1.6 between anomalous Hall and longitudinal conductivity, characteristic of the universal Hall mechanism in dirty-metal ferromagnets, emerges from a series of CrO2 films as we systematically increase structural disorder. Magnetic disorder in CrO2 increases with temperature and this drives a separate topological Hall mechanism. We find that these terms are controlled discretely by structural and magnetic defect populations, and their coexistence leads to apparent divergence from exponent 1.6, suggesting that the universal term is more prevalent than previously realized.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work reports on the synthesis of CrO2 thin films by atmospheric pressure CVD using chromium trioxide (CrO3) and oxygen. Highly oriented (100) CrO2 films containing highly oriented (0001) Cr2O3 were grown onto Al2O3(0001) substrates. Films display a sharp magnetic transition at 375 K and a saturation magnetization of 1.92 mu(B)/f.u., close to the bulk value of 2 mu(B)/f.u. for the CrO2.