977 resultados para Algebra
Resumo:
We give an example of a complete locally convex m-topology on the algebra of infinite differentiable functions on [0, 1] which is strictly coarser than the natural Frechet-topology but finer than the topology of pointwise convergence. A similar construction works on the algebra of continuous functions on [0, 1]. Using this examples we can separate different notions of diffotopy and homotopy.
Resumo:
Several methods based on an easy geometric argument are provided to prove that a given operator is not weakly supercyclic. The methods apply to different kinds of operators like composition operators or bilateral weighted shifts. In particular, it is shown that the classical Volterra operator is not weakly supercyclic on any of the LP [0, 1] spaces, 1
Resumo:
The multiplicative spectrum of a complex Banach space X is the class K(X) of all (automatically compact and Hausdorff) topological spaces appearing as spectra of Banach algebras (X,*) for all possible continuous multiplications on X turning X into a commutative associative complex algebra with the unity. The properties of the multiplicative spectrum are studied. In particular, we show that K(X^n) consists of countable compact spaces with at most n non-isolated points for any separable hereditarily indecomposable Banach space X. We prove that K(C[0,1]) coincides with the class of all metrizable compact spaces.
Resumo:
Descriptive characterizations of the point, the continuous, and the residual spectra of operators in Banach spaces are put forward. In particular, necessary and sufficient conditions for three disjoint subsets of the complex plane to be the point spectrum, the continuous spectrum, and the residual spectrum of a linear continuous operator in a separable Banach space are obtained.
Resumo:
A topological group G is said to be universal in a class K of topological groups if G is an element of K and if for every group H is an element of K there is a subgroup K of G that is isomorphic to H as a topological group. A group is constructed that is universal in the class of separable metrizable topological Abelian groups.
Resumo:
We study two-dimensional Banach spaces with polynomial numerical indices equal to zero.
Resumo:
A new C*-enlargement of a C*-algebra A nested between the local multiplier algebra of A and its injective envelope is introduced. Various aspects of this maximal C*-algebra of quotients are studied, notably in the setting of AW*-algebras. As a by-product we obtain a new example of a type I C*-algebra such that its second iterated local multiplier algebra is strictly larger than its local multiplier algebra.
Resumo:
We continue the study of multidimensional operator multipliers initiated in~cite{jtt}. We introduce the notion of the symbol of an operator multiplier. We characterise completely compact operator multipliers in terms of their symbol as well as in terms of approximation by finite rank multipliers. We give sufficient conditions for the sets of compact and completely compact multipliers to coincide and characterise the cases where an operator multiplier in the minimal tensor product of two C*-algebras is automatically compact. We give a description of multilinear modular completely compact completely bounded maps defined on the direct product of finitely many copies of the C*-algebra of compact operators in terms of tensor products, generalising results of Saar
Resumo:
We generalise Dedden's Theorem for nest algebras to nest algebra bimodules. We define an object which extends the Jacobson radical of a nest algebra, and characterose it generalising a theorem of Erdos.
Resumo:
We prove that two dual operator spaces $X$ and $Y$ are stably isomorphic if and only if there exist completely isometric normal representations $phi$ and $psi$ of $X$ and $Y$, respectively, and ternary rings of operators $M_1, M_2$ such that $phi (X)= [M_2^*psi (Y)M_1]^{-w^*}$ and $psi (Y)=[M_2phi (X)M_1^*].$ We prove that this is equivalent to certain canonical dual operator algebras associated with the operator spaces being stably isomorphic. We apply these operator space results to prove that certain dual operator algebras are stably isomorphic if and only if they are isomorphic. We provide examples motivated by CSL algebra theory.