965 resultados para Airway Epithelial-cells
Resumo:
Non-steroidal anti-inflammatory drugs (NSAIDs) induce apoptosis in gastrointestinal cancer cell lines. Similar actions on normal gastric epithelial cells could contribute to NSAID gastropathy. The present work therefore compared the actions of diclofenac, ibuprofen, indomethacin, and the cyclo-oxygenase-2 selective inhibitor, NS-398, on a primary culture of guinea-pig gastric mucous epithelial cells. Cell number was assessed by staining with crystal violet. Apoptotic activity was determined by condensation and fragmentation of nuclei and by assay of caspase-3-like activity. Necrosis was evaluated from release of cellular enzymes. Ibuprofen (250 μM for 24 h) promoted cell loss, and apoptosis, under both basal conditions and when apoptosis was increased by 25 μM N-Hexanoyl-D-sphingosine (C6-ceramide). Diclofenac (250 μM for 24 h) reduced the proportion of apoptotic nuclei from 5.2 to 2.1%, and caused inhibition of caspase-3-like activity, without causing necrosis under basal conditions. No such reduction in apoptotic activity was evident in the presence of 25 μM C6-ceramide. The inhibitory effect of diclofenac on basal caspase-3-like activity was also exhibited by the structurally similar mefenamic and flufenamic acids (1–250 μM), but not by niflumic acid. Inhibition of superoxide production by the cells increased caspase-3-like activity, but the inhibitory action of diclofenac on caspase activity remained. Diclofenac did not affect superoxide production. Diclofenac inhibited caspase-3-like activity in cell homogenates and also inhibited human recombinant caspase-3. In conclusion, NSAIDs vary in their effect on apoptotic activity in a primary culture of guinea-pig gastric mucous epithelial cells, and the inhibitory effect of diclofenac on basal apoptosis could involve an action on caspase activity.
Resumo:
Modification of human islets prior to transplantation may improve long-term clinical outcome in terms of diabetes management, by supporting graft function and reducing the potential for allo-rejection. Intragraft incorporation of stem cells secreting beta (β)-cell trophic and immunomodulatory factors represents a credible approach, but requires suitable culture methods to facilitate islet alteration without compromising integrity. This study employed a three-dimensional rotational cell culture system (RCCS) to achieve modification, preserve function, and ultimately influence immune cell responsiveness to human islets. Islets underwent intentional dispersal and rotational culture-assisted aggregation with amniotic epithelial cells (AEC) exhibiting intrinsic immunomodulatory potential. Reassembled islet constructs were assessed for functional integrity, and their ability to induce an allo-response in discrete T-cell subsets determined using mixed islet:lymphocyte reaction assays. RCCS supported the formation of islet:AEC aggregates with improved insulin secretory capacity compared to unmodified islets. Further, the allo-response of peripheral blood mononuclear cell (PBMC) and purified CD4+ and CD8+ T-cell subsets to AEC-bearing grafts was significantly (p < 0.05) attenuated. Rotational culture enables pre-transplant islet modification involving their integration with immunomodulatory stem cells capable of subduing the allo-reactivity of T cells relevant to islet rejection. The approach may play a role in achieving acute and long-term graft survival in islet transplantation.
Resumo:
The emerging role of the multifunctional enzyme, Transglutaminase 2 (TG2) in Cystic Fibrosis (CF) has been linked to its increased expression and intracellular transamidating activity. However, a full understanding of the molecular mechanisms involved still remains unclear despite numerous studies that have attempted to delineate this process. These mechanisms include the NFκB and TGFβ1 pathway amongst others. This study reveals for the first time that the development of fibrosis in CF is due to a TG2-driven epithelial to mesenchymal transition (EMT) via a mechanism involving the activation of the pro-fibrotic cytokine TGFβ1. Using a human ΔF508/W1282X CFTR CF mutant bronchial cell (IB3-1), its CFTR corrected “add-back” cell (C38) as well as a primary human bronchial epithelial cell (HBEC), elevated TG2 levels in the CFTR mutant IB3 cell were shown to activate latent TGFβ1 leading to increased levels found in the culture medium. This activation process was blocked by the presence of cell-permeable and impermeable TG2 inhibitors while inhibition of TGFβ1 receptors blocked TG2 expression. This demonstrates the direct link between TG2 and TGFβ1 in CF. The presence of active cell surface TG2 correlated with an increase in the expression of EMT markers, associated with the CF mutant cells, which could be blocked by the presence of TG2 inhibitors. This was mimicked using the “addback” C38 cell and the primary human bronchial epithelial cell, HBEC, where an increase in TG2 expression and activity in the presence of TGFβ1 concurred with a change in cell morphology and an elevation in EMT marker expression. Conversely, a knockdown of TG2 in the CF mutant IB3 cells illustrated that an inhibition of TG2 blocks the increase in EMT marker expression as well as causing an increase in TEER measurement. This together with an increase in the migration profile of the CF mutant IB3 cell against the “add-back” C38 cell suggests that TG2 drives a mesenchymal phenotype in CF. The involvement of TG2 activated TGFβ1 in CF was further demonstrated with an elevation/inhibition of p- SMAD 2 and 3 activation in the presence of TGFβ1/TG2 cell-permeable/impermeable inhibitors respectively. The use of a comparative airway cell model where bronchial epithelial cells were cultured at the air liquid interface (ALI) confirmed the observations in submerged culture depicting the robustness of the model and reiterated the importance of TG2 in CF. Using a CFTR corrector combined with TG2 inhibitors, this study showed that the correction and stabilisation of the ΔF508 CFTR mutation in the mutant cell forged an increase in matured CFTR copies trafficking to the apical surface by circumventing proteosomal degradation. Thus the results presented here suggests that TG2 expression is elevated in the CFTR mutant bronchial cell via a TGFβ1 driven positive feedback cycle whereby activation of latent TGFβ1 by TG2 leads in turn to an elevation in its own expression by TGFβ1. This vicious cycle then drives EMT in CF ultimately leading to lung remodelling and fibrosis. Importantly, TG2 inhibition blocks TGFβ1 activation leading to an inhibition of EMT and further blocks the emerging fibrosis, thus stabilizing and supporting the maturation, trafficking and conductance of CFTR channels at the apical surface.
Resumo:
Cystic fibrosis (CF) is a genetic disorder caused by mutation of the cystic fibrosis transmembrane conductance regulator (CFTR) for which there is no overall effective treatment. Recent work indicates tissue transglutaminase (TG2) plays a pivotal intracellular role in proteostasis in CF epithelia and that the pan TG inhibitor cysteamine improves CFTR stability. Here we show TG2 has another role in CF pathology linked with TGFβ1 activation and signalling, induction of epithelial-mesenchymal transition (EMT), CFTR stability and induction of matrix deposition. We show that increased TG2 expression in normal and CF bronchial epithelial cells increases TGFβ1 levels, promoting EMT progression, and impairs tight junctions as measured by Transepithelial Electric Resistance (TEER) which can be reversed by selective inhibition of TG2 with an observed increase in CFTR stability. Our data indicate that selective inhibition of TG2 provides a potential therapeutic avenue for reducing fibrosis and increasing CFTR stability in CF.
Resumo:
Human rhinovirus (HRV) infections are major contributors to the healthcare burden associated with acute exacerbations of chronic airway disease, such as chronic obstructive pulmonary disease and asthma. Cellular responses to HRV are mediated through pattern recognition receptors that may in part signal from membrane microdomains. We previously found Toll-like receptor signaling is reduced, by targeting membrane microdomains with a specific liposomal phosphatidylserine species, 1-stearoyl-2-arachidonoyl-sn-glycero-3-phospho-L-serine (SAPS). Here we explored the ability of this approach to target a clinically important pathogen. We determined the biochemical and biophysical properties and stability of SAPS liposomes and studied their ability to modulate rhinovirus-induced inflammation, measured by cytokine production, and rhinovirus replication in both immortalized and normal primary bronchial epithelial cells. SAPS liposomes rapidly partitioned throughout the plasma membrane and internal cellular membranes of epithelial cells. Uptake of liposomes did not cause cell death, but was associated with markedly reduced inflammatory responses to rhinovirus, at the expense of only modest non-significant increases in viral replication, and without impairment of interferon receptor signaling. Thus using liposomes of phosphatidylserine to target membrane microdomains is a feasible mechanism for modulating rhinovirus-induced signaling, and potentially a prototypic new therapy for viral-mediated inflammation.
Resumo:
Increasing levels of tissue hypoxia have been reported as a natural feature of the aging prostate gland and may be a risk factor for the development of prostate cancer. In this study, we have used PwR-1E benign prostate epithelial cells and an equivalently aged hypoxia-adapted PwR-1E sub-line to identify phenotypic and epigenetic consequences of chronic hypoxia in prostate cells. We have identified a significantly altered cellular phenotype in response to chronic hypoxia as characterized by increased receptor-mediated apoptotic resistance, the induction of cellular senescence, increased invasion and the increased secretion of IL-1 beta, IL6, IL8 and TNFalpha cytokines. In association with these phenotypic changes and the absence of HIF-1 alpha protein expression, we have demonstrated significant increases in global levels of DNA methylation and H3K9 histone acetylation in these cells, concomitant with the increased expression of DNA methyltransferase DMNT3b and gene-specific changes in DNA methylation at key imprinting loci. In conclusion, we have demonstrated a genome-wide adjustment of DNA methylation and histone acetylation under chronic hypoxic conditions in the prostate. These epigenetic signatures may represent an additional mechanism to promote and maintain a hypoxic-adapted cellular phenotype with a potential role in tumour development.
Resumo:
Sub lethal (0.2 ppm) mercuric chloride induced stress related histopathological alterations in the epithelial linings of foot (podium) of the edible freshwater mussel Lamellidens marginalis (Lamarck) were studied using histochemical techniques up to 60 days of exposure. The histomorphological changes were manifested only slowly and its intensity was somewhat proportional to the duration of exposure. The immediate response of the exposed mussels was the altered mucous secretion. There was a progressive incorporation of sulphated glycoproteins into the secretory contents of the mucous cells especially in the first half of the experiment. Marked histopathological changes including necrosis, appearance of pyknotic nuclei, sloughing of epithelial cells and appearance of non-tissue spaces, etc., started appearing during the later half of the experiment. The fag end of the experiment, which witnessed prominent histomorphological changes, was accompanied by highly decreased mucous secretion. KEYWORDS: heavy metal toxicity, mercuric chloride, Lamellidens marginalis, freshwater mussel, histopathology.
Resumo:
Purpose. To investigate the influence of diadenosine polyphosphates on the rate of corneal epithelial cell migration. Methods. Primary corneal epithelial cell cultures were obtained from New Zealand White rabbits. Immunocytochemical experiments were performed by fixing the cells with 4% paraformaldehyde (PFA) and incubated with cytokeratin 3 primary antibody, which was subsequently incubated with a secondary IgG mouse labeled with FITC, and the cells were observed under confocal microscopy. Migration studies were performed by taking confluent monolayers that were wounded with a pipette tip and challenged with different di- and mononucleotides with or without P2 antagonist (n = 8 each treatment). For concentration–response analysis, compounds were tested in doses ranging from 10−8 to 10−3 M (n = 8). The stability of the dinucleotides was assayed by HPLC, with an isocratic method (n = 4). Results. Cells under study were verified as corneal epithelial cells via the immunocytochemical analysis. Cell migration experiments showed that Ap4A, UTP, and ATP accelerated the rate of healing (5, 2.75, and 3 hours, respectively; P < 0.05; P < 0.001), whereas Ap3A, Ap5A, and UDP delayed it (6.5, 10, and 2 hours, respectively; P < 0.05). ADP did not modify the rate of migration. Antagonists demonstrated that Ap4A and Ap3A did activate different P2Y receptors mediating corneal wound-healing acceleration and delay. Concerning the possible degradation of the dinucleotides, it was almost impossible to detect any products resulting from their cleavage. Conclusions. Based on the pharmacological profile of all the compounds tested, the two main P2Y receptors that exist in these corneal cells are a P2Y2 receptor accelerating the rate of healing and a P2Y6 receptor that delays this process.
Resumo:
The epididymis has an important role in the maturation of sperm for fertilization, but little is known about the epididymal molecules involved in sperm modifications during this process. We have previously described the expression pattern for an antigen in epididymal epithelial cells that reacts with the monoclonal antibody (mAb) TRA 54. Immunohistochemical and immunoblotting analyses suggest that the epitope of the epididymal antigen probably involves a sugar moiety that is released into the epididymal lumen in an androgen-dependent manner and subsequently binds to luminal sperm. Using column chromatography, SDS-PAGE with in situ digestion and mass spectrometry, we have identified the protein recognized by mAb TRA 54 in mouse epididymal epithelial cells. The ∼65 kDa protein is part of a high molecular mass complex (∼260 kDa) that is also present in the sperm acrosomal vesicle and is completely released after the acrosomal reaction. The amino acid sequence of the protein corresponded to that of albumin. Immunoprecipitates with anti-albumin antibody contained the antigen recognized by mAb TRA 54, indicating that the epididymal molecule recognized by mAb TRA 54 is albumin. RT-PCR detected albumin mRNA in the epididymis and fertilization assays in vitro showed that the glycoprotein complex containing albumin was involved in the ability of sperm to recognize and penetrate the egg zona pellucida. Together, these results indicate that epididymal-derived albumin participates in the formation of a high molecular mass glycoprotein complex that has an important role in egg fertilization.
Resumo:
Bisphenol A (BPA) is a chemical that has been investigated for it potential to cause prostate diseases. In this study, pregnant Sprague-Dawley rats were treated with 25 or 250 μg/kg BPA from gestational day (GD) 10 to GD21 with or without concurrent indole-3-carbinol (I3C) feeding. I3C is a phytochemical, and it affords chemoprotection against many types of neoplasia. Male F1 rats from different litters were euthanized on post-natal day (PND) 21 and PND180. BPA-treated groups showed a significant increase in histopathological lesions, but I3C feeding reversed many of these changes, mainly at PND180. Maternal I3C feeding increased prostate epithelial apoptosis in the BPA-treated groups and across age groups. Furthermore, I3C induced partial normalization of the prostate histoarchitecture. The results pointed to a protective effect of maternal I3C feeding during pregnancy in the BPA-exposed male offspring, thereby indicating reduction in the harmful effects of gestational BPA imprinting on the prostate.
Resumo:
Pituitary macroadenomas are rare intracranial tumors. In a few cases, they may present aggressive behavior and invade the sphenoid sinus and nasal cavity, causing unusual symptoms. In this paper, we report an atypical case of pituitary adenoma presenting as a nasal mass. The patient was a 44-year-old woman who had had amenorrhea and galactorrhea for ten months, with associated nasal obstruction, macroglossia and acromegaly. Both growth hormone and prolactin levels were increased. Magnetic resonance imaging showed a large mass originating from the lower surface of the pituitary gland, associated with sella turcica erosion and tumor extension through the sphenoid sinus and nasal cavity. Histopathological analysis demonstrated a chromophobe pituitary adenoma with densely packed rounded epithelial cells, with some atypias and rare mitotic figures. There was no evidence of metastases. Macroadenoma invading the nasal cavity is a rare condition and few similar cases have been reported in the literature. This study contributes towards showing that tumor extension to the sphenoid sinus and nasopharynx needs to be considered and investigated in order to make an early diagnosis when atypical symptoms like nasal obstruction are present.
Resumo:
Short-chain fatty acids (SCFAs) are fermentation end products produced by the intestinal microbiota and have anti-inflammatory and histone deacetylase-inhibiting properties. Recently, a dual relationship between the intestine and kidneys has been unraveled. Therefore, we evaluated the role of SCFA in an AKI model in which the inflammatory process has a detrimental role. We observed that therapy with the three main SCFAs (acetate, propionate, and butyrate) improved renal dysfunction caused by injury. This protection was associated with low levels of local and systemic inflammation, oxidative cellular stress, cell infiltration/activation, and apoptosis. However, it was also associated with an increase in autophagy. Moreover, SCFAs inhibited histone deacetylase activity and modulated the expression levels of enzymes involved in chromatin modification. In vitro analyses showed that SCFAs modulated the inflammatory process, decreasing the maturation of dendritic cells and inhibiting the capacity of these cells to induce CD4(+) and CD8(+) T cell proliferation. Furthermore, SCFAs ameliorated the effects of hypoxia in kidney epithelial cells by improving mitochondrial biogenesis. Notably, mice treated with acetate-producing bacteria also had better outcomes after AKI. Thus, we demonstrate that SCFAs improve organ function and viability after an injury through modulation of the inflammatory process, most likely via epigenetic modification.
Resumo:
The study assessed phloem canal development and ultra-structure in shoot apices of Spondias dulcis G. Forst., phloematic canal ultra-structure in shoot apices of Tapirira guianensis Aubl., and floral canal ultra-structure and development and fruit canal ultra-structure of the latter specie. The flower and fruit canals of Anacardium humile St.Hil. were also studied ultra-structurally. The canals in shoot apices of S. dulcis show schizo-lysigenous formation and the floral canals of T. guianensis show schizogenous development. Epithelial cells of S. dulcis and T. guianensis canals have rough endoplasmic reticulum, free ribosomes, elongated plastids of several shapes with osmiophilic inclusions and dictyosomes with production of vesicles. Such organelles participate in the secretion of a heterogeneous exudate, which is comprised of hydrophilic and lipophilic substances. The epithelial cells of the fruit of A. humile present elongated plastids with circular membrane system, which are involved in the synthesis of lipophilic substances. The results of the ultra-structural analyses of the epithelial cells corroborate the results previously obtained in a histochemical study. In the histochemical study, lipophilic and hydrophilic substances were identified in the canals of T. guinanensis and S. dulcis and only lipophilic substances were identified in the canals of A. humile. Based on the ultrastructural aspects of the secretory canals of T. guianensis and S. dulcis we concluded that the plastids of the epithelial cells of the two species are different although they produce secretion of similar composition. A new record for the family is the presence of a great number of circular plastids in epithelial cells of the fruit of Anacardium humile. The pattern found in the secretory canals of the studied species is the ecrine type of secretion release.
Resumo:
Vimentin is a cytoeskeletal intermediate filament protein commonly observed in mesenchymal cells; however, it can also be found in malignant epithelial cells. It is demonstrated in several carcinomas, such as those of the cervix, breast and bladder, in which it is widely used as a marker of the epithelial to mesenchymal transition that takes place during embryogenesis and metastasis. Vimentin is associated with tumors that show a high degree of invasiveness, being detected in invasion front cells. Its expression seems to be influenced by the tumor microenvironment. The aim of this study was to evaluate vimentin expression in head and neck squamous cell carcinoma (HNSCC) cell lines, and to investigate the contribution of the microenvironment to its expression. HNSCC cell lines (HN6, HN30 and HN31) and an immortalized nontumorigenic cell line (HaCaT) were submitted to a three-dimensional assay with Matrigel. Cytoplasmatic staining of the HN6 cell line cultured without Matrigel and of the HN30 and HN31 cell lines cultured with Matrigel was demonstrated through immunohistochemistry. Western Blotting revealed a significant decrease in vimentin expression for the HN6 cell line and a significant increase for the HN30 and HN31 cell lines cultured with Matrigel. The results suggest that vimentin can be expressed in HNSCC cells and its presence is influenced by the microenvironment of a tumor.
Resumo:
The neurohistologic observations were performed using the specimens prepared by Winkelmann and Schmitt silver impregnation method. The tissues were fixed in 10% formalin solution and sections of 40µm thickness were obtained by Leica Cryostat at -30ºC. The sections of dorsal mucosa of White-lipped peccary tongue showed numerous filliform and fungiform papillae, and two vallate papillae on the caudal part. The epithelial layer revealed queratinized epithelial cells and the connective tissue papillae of different sizes and shapes. Thick nerve fiber bundles are noted into the subepithelial connective tissue of the papillae. The connective tissue of fungiform and vallate papillae contained numerous sensitive nerves fibers bundles forming a complex nerve plexus.