968 resultados para ABSORPTION-SPECTROSCOPY
Resumo:
The primary cementing is an important step in the oilwell drilling process, ensuring the mechanical stability of the well and the hydraulic isolation between casing and formation. For slurries to meet the requirements for application in a certain well, some care in the project should be taken into account to obtain a cement paste with the proper composition. In most cases, it is necessary to add chemicals to the cement to modify its properties, according to the operation conditions and thus obtain slurries that can move inside the jacket providing a good displacement to the interest area. New technologies of preparation and use of chemicals and modernization of technological standards in the construction industry have resulted in the development of new chemical additives for optimizing the properties of building materials. Products such as polycarboxylate superplasticizers provide improved fluidity and cohesion of the cement grains, in addition to improving the dispersion with respect to slurries without additives. This study aimed at adapting chemical additives used in civil construction to be used use in oilwell cement slurries systems, using Portland cement CPP-Special Class as the hydraulic binder. The chemical additives classified as defoamer, dispersant, fluid loss controller and retarder were characterized by infrared absorption spectroscopy, thermogravimetric analyses and technological tests set by the API (American Petroleum Institute). These additives showed satisfactory results for its application in cement slurries systems for oil wells. The silicone-based defoamer promoted the reduction of air bubbles incorporated during the stirring of the slurries. The dispersant significantly reduced the rheological parameters of the systems studied. The tests performed with the fluid loss controller and the retarder also resulted in suitable properties for application as chemical additives in cement slurries
Resumo:
The use of biofuels remotes to the eighteenth century, when Rudolf Diesel made the first trials using peanut oil as fuel in a compression ignition engine. Based on these trials, there was the need for some chemical change to vegetable oil. Among these chemical transformations, we can mention the cracking and transesterification. This work aims at conducting a study using the thermocatalytic and thermal cracking of sunflower oil, using the Al-MCM-41 catalyst. The material type mesoporous Al-MCM-41 was synthesized and characterized by Hydrothermical methods of X-ray diffraction, scanning electron microscopy, nitrogen adsorption, absorption spectroscopy in the infrared and thermal gravimetric analysis (TG / DTG).The study was conducted on the thermogravimetric behavior of sunflower oil on the mesoporous catalyst cited. Activation energy, conversion, and oil degradation as a function of temperature were estimated based on the integral curves of thermogravimetric analysis and the kinetic method of Vyazovkin. The mesoporous material Al-MCM-41 showed one-dimensional hexagonal formation. The study of the kinetic behavior of sunflower oil with the catalyst showed a lower activation energy against the activation energy of pure sunflower oil. Two liquid fractions of sunflower oil were obtained, both in thermal and thermocatalytic pyrolisis. The first fraction obtained was called bio-oil and the second fraction obtained was called acid fraction. The acid fraction collected, in thermal and thermocatalytic pyrolisis, showed very high level of acidity, which is why it was called acid fraction. The first fraction was collected bio-called because it presented results in the range similar to petroleum diesel
Resumo:
Aiming to reduce and reuse waste oil from oily sludge generated in large volumes by the oil industry, types of nanostructured materials Al-MCM-41 and Al-SBA-15, with ratios of Si / Al = 50, were synthesized , and calcined solids used as catalysts in the degradation of oily sludge thermocatalytic oil from oilfield Canto do Amaro, in the state of Rio Grande do Norte. Samples of nanostructured materials were characterized by thermogravimetric analysis (TG / DTG), X-ray diffraction (XRD), scanning electron microscopy (SEM), absorption spectroscopy in the infrared Fourier transform (FT-IR) and adsorption nitrogen (BET). The characterization showed that the synthesized materials resulted in a catalyst nanostructure, and ordered pore diameter and surface area according to existing literature. The oily sludge sample was characterized by determining the API gravity and sulfur content and SARA analysis (saturates, aromatics, resins and asphaltenes). The results showed a material equivalent to the average oil with API gravity of 26.1, a low sulfur content and considerable amount of resins and asphaltenes, presented above in the literature. The thermal and catalytic degradation of the oily sludge oil was performed from room temperature to 870 ° C in the ratios of heating of 5, 10 and 20 ° C min-1. The curves generated by TG / DTG showed a more accelerated degradation of oily sludge when it introduced the nanostructured materials. These results were confirmed by activation energy calculated by the method of Flynn-Wall, in the presence of catalysts reduced energy, in particular in the range of cracking, showing the process efficiency, mainly for extraction of lightweight materials of composition of oily sludge, such as diesel and gasoline
Resumo:
Résumé : Les transferts d’électrons photo-induits et d’énergie jouent un rôle primordial dans un grand nombre de processus photochimiques et photobiologiques, comme la respiration ou la photosynthèse. Une très grande quantité de systèmes à liaisons covalentes ont été conçus pour copier ces processus de transferts. Cependant, les progrès sont, en grande partie, limités par les difficultés rencontrées dans la synthèse de nouveaux couples de types donneurs-accepteurs. Récemment, des espèces utilisant des liaisons non-covalentes, comme les liaisons hydrogènes, les interactions [pi]-[pi], les liaisons de coordination métal-ligands ou encore les interactions électrostatiques sont le centre d’un nouvel intérêt du fait qu’ils soient plus faciles à synthétiser et à gérer pour obtenir des comportements de transferts d’électrons ou d’énergie plus flexibles et sélectifs. C’est dans cette optique que le travail de cette thèse a été mené, i.e. de concevoir des composés auto-assemblés avec des porphyrines et un cluster de palladium pour l’étude des transferts d’électrons photo-induits et d’énergie. Cette thèse se divise en quatre parties principales. Dans la première section, le chapitre 3, deux colorants porphyriniques, soit le 5-(4-carboxylphényl)-10, 15, 20-tristolyl(porphyrinato)zinc(II) (MCP, avec Na+ comme contre-ion) et 5, 15-bis(4-carboxylphényl)-15, 20-bistolyl(porphyrinato)zinc(II) (DCP, avec Na+ comme contre-ion) ont été utilisés comme donneurs d’électrons, et le [Pd3(dppm)3(CO)]2+ ([Pd32+], dppm = (Ph2P)2CH2, PF6‾ est le contre-ion) a été choisi comme accepteur d’électrons. La structure de l’assemblage [Pd32+]•••porphyrine a été élucidée par l’optimisation des géométries à l’aide de calculs DFT. La spectroscopie d’absorption transitoire (TAS) montre la vitesse de transferts d’électrons la plus rapide (< 85 fs, temps inférieurs à la limite de détection) jamais enregistrée pour ce type de système (porphyrine-accepteur auto-assemblés). Généralement, ces processus sont de l’ordre de l’échelle de la ps-ns. Cette vitesse est comparable aux plus rapides transferts d’électrons rapportés dans le cas de systèmes covalents de type porphyrine-accepteur rapide (< 85 fs, temps inférieurs à la limite de détection). Ce transfert d’électrons ultra-rapide (ket > 1.2 × 1013 s-1) se produit à l’état énergétique S1 des colorants dans une structure liée directement par des interactions ioniques, ce qui indique qu’il n’est pas nécessaire d’avoir de forts liens ou une géométrie courbée entre le donneur et l’accepteur. Dans une deuxième section, au chapitre 4, nous avons étudié en profondeur l’effet de l’utilisation de porphyrines à systèmes π-étendus sur le comportement des transferts d’électrons. Le colorant 9, 18, 27, 36-tétrakis-meso-(4-carboxyphényl)tétrabenzoporphyrinatozinc(II) (TCPBP, avec Na+ comme contre-ion) a été sélectionné comme candidat, et le 5, 10, 15, 20-tétrakis-meso-(4-carboxyphényl)porphyrineatozinc(II) (TCPP, avec Na+ comme contre-ion) a aussi été utilisé à des fins de comparaisons. TCPBP et TCPP ont, tous deux, été utilisés comme donneurs d’électrons pour fabriquer des assemblages supramoléculaires avec le cluster [Pd32+] comme accepteur d’électrons. Les calculs DFT ont été réalisés pour expliquer les structures de ces assemblages. Dans les conditions expérimentales, ces assemblages sont composés principalement d’une porphyrine avec 4 équivalents de clusters. Ces systèmes ont aussi été investigués par des mesures de quenching (perte de luminescence), par électrochimie et par d’autres techniques. Les transferts d’électrons (< 85 fs; temps inférieurs à la limite de détection) étaient aussi observés, de façon similaire aux assemblages MCP•••[Pd32+] et [Pd32+]•••DCP•••[Pd32+]. Les résultats nous indiquent que la modification de la structure de la porphyrine vers la tétrabenzoporphyrine ne semble pas influencer le comportement des cinétiques de transferts d’électrons (aller ou retour). Dans la troisième section, le chapitre 5, nous avons synthétisé la porphyrine hautement [pi]-conjuguée: 9, 18, 27, 36-tétra-(4-carboxyphényléthynyl)tétrabenzoporphyrinatozinc(II) (TCPEBP, avec Na+ comme contre-ion) par des fonctionnalisations en positions meso- et β, β-, qui présente un déplacement vers le rouge de la bande de Soret et des bandes Q. TCPEBP était utilisé comme donneur d’électrons pour fabriquer des motifs supramoléculaires avec le [Pd32+] comme accepteur d’électrons. Des expériences en parallèle ont été menées en utilisant la 5, 10, 15, 20-tétra-(4-carboxyphényl)éthynylporphyrinatozinc(II) (TCPEP, avec Na+ comme contre-ion). Des calculs DFT et TDDFT ont été réalisés pour de nouveau déterminer de façon théorique les structures de ces systèmes. Les constantes d’association pour les assemblages TCPEBP•••[Pd32+]x sont les plus élevées parmi tous les assemblages entre des porphyrines et le cluster de palladium rencontrés dans la littérature. La TAS a montré, encore une fois, des processus de transferts d’électrons dans des échelles de l’ordre de 75-110 fs. Cependant, les transferts de retour d’électrons sont aussi très rapides (< 1 ps), ce qui est un obstacle potentiel pour des applications en cellules solaires à pigment photosensible (DSSCs). Dans la quatrième section, le chapitre 6, les transferts d’énergie triplets (TET) ont été étudiés pour les assemblages MCP•••[Pd32+] et [Pd32+]•••DCP•••[Pd32+]. Les analyses spectrales des états transitoires dans l’échelle de temps de la ns-[mu]s démontrent de façon évidente les TETs; ceux-ci présentent des transferts d’énergie lents et/ou des vitesses moyennes pour des transferts d’énergie T1-T1 (3dye*•••[Pd32+] → dye•••3[Pd32+]*) opérant à travers exclusivement le mécanisme de Förster avec des valeurs de kET autour de ~ 1 × 105 s-1 selon les mesures d’absorption transitoires à 298 K. Des forces motrices non-favorables rendent ces types de processus non-opérants ou très lents dans les états T1. L’état T1 de [Pd32+] (~8190 cm-1) a été qualitativement déterminé par DFT et par la mise en évidence de l’émission S0 ← Tn retardée à 680-700 nm provenant de l’annihilation T1-T1, ce qui fait que ce cluster peut potentiellement agir comme un donneur à partir de ses états Tn, et accepteur à partir de T1 à l’intérieur de ces assemblages. Des pertes d’intensités de types statiques pour la phosphorescence dans le proche-IR sont observées à 785 nm. Ce travail démontre une efficacité modérée des colorants à base de porphyrines pour être impliquée dans des TETs avec des fragments organométalliques, et ce, même attachées grâce à des interactions ioniques. En conclusion, les assemblages ioniques à base de porphyrines et de clusters de palladium présentent des propriétés de transferts d’électrons S1 ultra-rapides, et des transferts d’énergie T1 de vitesses modérées, ce qui est utile pour de possibles applications comme outils optoélectroniques. D’autres études, plus en profondeur, sont présentement en progrès.
Resumo:
Efficient energy storage holds the key to reducing waste energy and enabling the use of advanced handheld electronic devices, hydrid electric vehicles and residential energy storage. Recently, Li-ion batteries have been identified and employed as energy storage devices due to their high gravimetric and volumetric energy densities, in comparison to previous technologies. However, more research is required to enhance the efficiency of Li-ion batteries by discovering electrodes with larger electrochemical discharge capacities, while maintaining electrochemical stability. The aims of this study are to develop new microwave-assisted synthesis routes to nanostructured insertion cathodes, which harbor a greater affinity for lithium extraction and insertion than bulk materials. Subsequent to this, state-of-the-art synchrotron based techniques have been employed to understand structural and dynamic behaviour of nanostructured cathode materials during battery cell operation. In this study, microwave-assisted routes to a-LiFePO4, VO2(B), V3O7, H2V3O8 and V4O6(OH)4 have all been developed. Muon spin relaxation has shown that the presence of b-LiFePO4 has a detrimental effect on the lithium diffusion properties of a-LiFePO4, in agreement with first principles calculations. For the first time, a-LiFePO4 nanostructures have been obtained by employing a deep eutectic solvent reaction media showing near theoretical capacity (162 mAh g–1). Studies on VO2(B) have shown that the discharge capacity obtained is linked to the synthesis method. Electrochemical studies of H2V3O8 nanowires have shown outstanding discharge capacities (323 mAh g–1 at 100 mA g–1) and rate capability (180 mAh g–1 at 1 A g–1). The electrochemcial properties of V4O6(OH)4 have been investigated for the first time and show a promising discharge capacity of (180 mAh g–1). Lastly, in situ X-ray absorption spectroscopy has been utilised to track the evolution of the oxidation states in a-LiFePO4, VO2(B) and H2V3O8, and has shown these can all be observed dynamically.
Resumo:
Se presentan las propiedades eléctricas del compuesto Cu3BiS3 depositado por co-evaporación. Este es un nuevo compuesto que puede tener propiedades adecuadas para ser utilizado como capa absorbente en celdas solares. Las muestras fueron caracterizadas a través de medidas de efecto Hall y fotovoltaje superficial transiente (SPV). A través de medidas de efecto Hall se encontró que la concentración de portadores de carga n es del orden de 1016 cm-3 independiente de la relación de masas de Cu/Bi. También se encontró que la movilidad de este compuesto (μ del orden de 4 cm2V -1s-1) varía de acuerdo con los mecanismos de transporte que la gobiernan en dependencia con la temperatura. A partir de las medidas de SPV se encontró alta densidad de defectos superficiales, defectos que son pasivados al superponer una capa buffer sobre el compuesto Cu3BiS3.
Resumo:
The aim of the present work is to gain new insights into the formation mechanism of CdTe magic-sized clusters (MSCs) at low temperatures, as well as on their evolution towards 1D and 2D nanostructures and assemblies thereof, under mild reaction conditions. The reaction system included toluene as solvent, octylamine as primary alkylamine, trioctylphosphine-Te as chalcogenide precursor and Cd(oleate)2 as metal precursor. UV-Vis absorption spectroscopy and transmission electron microscopy (TEM) were used to analyze samples containing concentrations of octylamine of 0.2, 0.8 and 2 M: well-defined, sharp absorption peaks were observed, with peaks maxima at 449, 417 and 373 nm respectively, and 1D structures with a string-like appearance were displayed in the TEM images. Investigating peaks growth, step-wise peaks shift to lower energies and reverse, step-wise peak shift to higher energies allowed to propose a model to describe the system, based on interconnected [CdTe]x cluster units originating an amine-capped, 1-dimensional, polymer-like structure, in which different degrees of electronic coupling between the clusters are held responsible for the different absorption transitions. The many parameters involved in the synthesis procedure were then investigated, starting from the Cd:Te ratio, the role of the amine, the use of different phosphine-Te and Cd precursors. The results allowed to gain important information of the reaction mechanism, as well as on the different behavior of the species featuring the sharp absorption peaks in each case. Using Cd(acetate)2 as metal precursor, 2D structures were found to evolve from the MSCs solutions over time, and their tendency to self-assemble was then analyzed employing two amines of different alkyl chain length, octylamine (C-8) and oleylamine (C-18). Their co-presence led to the formation of free-floating triangular nanosheets, which tend to readily aggregate if only octylamine is present in solution.
Resumo:
This work describes the synthesis of a propargylcarbamate-functionalized isophthalate ligand and its use in the solvothermal preparation of a new copper(II)-based metal organic framework named [Cu(1,3-YBDC)]ˑxH2O (also abbreviated as Cu-MOF. The characterization of this compound was performed using several complementary techniques such as infrared (ATR-FTIR) and Raman spectroscopy, X-ray powder diffraction spectroscopy (PXRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), atomic absorption spectroscopy (AAS) as well as thermal and surface area measurements. Synchrotron X-ray diffraction analysis revealed that this MOF contains a complex network of 5-substituted isophthalate anions bound to Cu(II) centers, arranged in pairs within paddlewheel (or “Chinese lantern”) structure with a short Cu…Cu distance of 2.633 Å. Quite unexpectedly, the apical atom in the paddlewheel structure belongs to the carbamate carbonyl oxygen atom. Such extra coordination by the propargylcarbamate groups drastically reduces the MOF porosity, a feature that was also confirmed by BET measurements. Indeed, its surface area was determined to be low (14.5 ± 0.8 m2/g) as its total pore volume (46 mm3/g). Successively the Cu-MOF was treated with HAuCl4 with the aim of studying the ability of the propargylcarbamate functionality to capture the Au(III) ion and reduce it to Au(0) to give gold nanoparticles (AuNPs). The overall amount of gold retained by the Cu-MOF/Au was determined by AAS while the amount of gold and its oxidation state on the surface of the MOF was studied by XPS. A glassy carbon (GC) electrode was drop-casted with a Cu-MOF suspension to electrochemically characterize the material through cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The performance of the modified electrodes towards nitrite oxidation was tested by CV and chronoamperometry.
Resumo:
The research project is focused on the investigation of the polymorphism of crystalline molecular material for organic semiconductor applications under non-ambient conditions, and the solid-state characterization and crystal structure determination of the different polymorphic forms. In particular, this research project has tackled the investigation and characterization of the polymorphism of perylene diimides (PDIs) derivatives at high temperatures and pressures, in particular N,N’-dialkyl-3,4,9,10-perylendiimide (PDI-Cn, with n = 5, 6, 7, 8). These molecules are characterized by excellent chemical, thermal, and photostability, high electron affinity, strong absorption in the visible region, low LUMO energies, good air stability, and good charge transport properties, which can be tuned via functionalization; these features make them promising n-type organic semiconductor materials for several applications such as OFETs, OPV cells, laser dye, sensors, bioimaging, etc. The thermal characterization of PDI-Cn was carried out by a combination of differential scanning calorimetry, variable temperature X-ray diffraction, hot-stage microscopy, and in the case of PDI-C5 also variable temperature Raman spectroscopy. Whereas crystal structure determination was carried out by both Single Crystal and Powder X-ray diffraction. Moreover, high-pressure polymorphism via pressure-dependent UV-Vis absorption spectroscopy and high-pressure Single Crystal X-ray diffraction was carried out in this project. A data-driven approach based on a combination of self-organizing maps (SOM) and principal component analysis (PCA) is also reported was used to classify different π-stacking arrangements of PDI derivatives into families of similar crystal packing. Besides the main project, in the framework of structure-property analysis under non-ambient conditions, the structural investigation of the water loss in Pt- and Pd- based vapochromic potassium/lithium salts upon temperature, and the investigation of structure-mechanical property relationships in polymorphs of a thienopyrrolyldione endcapped oligothiophene (C4-NT3N) are reported.
Resumo:
The research work described in this thesis concerns the synthesis, characterization, and applications of two kinds of metal-organic frameworks (MOFs), Copper based MOF (Cu-MOF) and zirconium based MOF (Zr-MOF) functionalized with new linkers. The common thread of this research project can be summarized in three work phases: first, the synthesis and characterization of new organic linkers is described, followed by the presentation of the different optimization conditions for the MOFs synthesis. Second, the new materials were fully characterized using several complementary techniques, such as infrared (ATR-FTIR) and Raman spectroscopy, X-ray powder diffraction spectroscopy (PXRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), atomic absorption spectroscopy (AAS) as well as thermal and surface area measurements. Final, to obtain a complete work the possible environmental applications of the new materials were explored.
Resumo:
The study of the atmospheric chemical composition is crucial to understand the climate changes that we are experiencing in the last decades and to monitor the air quality over industrialized areas. The Multi-AXis Differential Optical Absorption Spectroscopy (MAX-DOAS) ground-based instruments are particularly suitable to derive the concentration of some trace gases that absorb the Visible (VIS) and Ultra-Violet (UV) solar radiation. The zenith-sky spectra acquired by the Gas Analyzer Spectrometer Correlating Optical Differences / New Generation 4 (GASCOD/NG4) instrument are exploited to retrieve the NO2 and O3 total Vertical Column Densities (VCDs) over Lecce. The results show that the NO2 total VCDs are significantly affected by the tropospheric content, consequence of the anthropogenic activity. Indeed, they present systematically lower values during Sunday, when less traffic is generally present around the measurement site, and during windy days, especially when the wind direction measured at 2 m height is not from the city of Lecce. Another MAX-DOAS instrument (SkySpec-2D) is exploited to create the first Italian MAX-DOAS site compliant to the Fiducial Reference Measurements for DOAS (FRM4DOAS) standards, in San Pietro Capofiume (SPC), located in the middle of the Po Valley. After the assessment of the SkySpec-2D’s performances through two measurement campaigns taken place in Bologna and in Rome, SkySpec-2D is installed in SPC on the 1st October 2021. Its MAX-DOAS spectra are used to retrieve the NO2 and O3 total VCDs, and aerosol extinction and NO2 tropospheric vertical profiles over the Po Valley exploiting the Bremen Optimal estimation REtrieval for Aerosol and trace gaseS (BOREAS) algorithm. Promising results are found, with high correlations against both in-situ and satellite data. In the future, these data will play an important role for air quality studies over the Po Valley and for satellite validation purposes.
Resumo:
This thesis aims to investigate the fundamental processes governing the performance of different types of photoelectrodes used in photoelectrochemical (PEC) applications, such as unbiased water splitting for hydrogen production. Unraveling the transport and recombination phenomena in nanostructured and surface-modified heterojunctions at a semiconductor/electrolyte interface is not trivial. To approach this task, the work presented here first focus on a hydrogen-terminated p-silicon photocathode in acetonitrile, considered as a standard reference for PEC studies. Steady-state and time-resolved excitation at long wavelength provided clear evidence of the formation of an inversion layer and revealed that the most optimal photovoltage and the longest electron-hole pair lifetime occurs when the reduction potential for the species in solution lies within the unfilled conduction band states. Understanding more complex systems is not as straight-forward and a complete characterization that combine time- and frequency-resolved techniques is needed. Intensity modulated photocurrent spectroscopy and transient absorption spectroscopy are used here on WO3/BiVO4 heterojunctions. By selectively probing the two layers of the heterojunction, the occurrence of interfacial recombination was identified. Then, the addition of Co-Fe based overlayers resulted in passivation of surface states and charge storage at the overlayer active sites, providing higher charge separation efficiency and suppression of recombination in time scales that go from picoseconds to seconds. Finally, the charge carrier kinetics of several different Cu(In,Ga)Se2 (CIGS)-based architectures used for water reduction was investigated. The efficiency of a CIGS photocathode is severely limited by charge transfer at the electrode/electrolyte interface compared to the same absorber layer used as a photovoltaic cell. A NiMo binary alloy deposited on the photocathode surface showed a remarkable enhancement in the transfer rate of electrons in solution. An external CIGS photovoltaic module assisting a NiMo dark cathode displayed optimal absorption and charge separation properties and a highly performing interface with the solution.
Resumo:
The thesis is dedicated to the implementation of advanced x-ray-based techniques for the investigation of the battery systems, more predominantly, the cathode materials. The implemented characterisation methods include synchrotron based x-ray absorption spectroscopy, powder x-ray diffraction, 2-dimensional x-ray fluorescence, full field transmission soft x-ray microscopy, and laboratory x-ray photoelectron spectroscopy. The research highlights the different areas of expertise for each described method, in terms of material characterisation, exploring their complementarities and intersections. The results are focused over manganese hexacyanoferrate and partially Ni substituted manganese hexacyanoferrate, through both organic and aqueous battery systems. In aqueous system, the modification of cathode composition has been observed with various techniques, indicating to the processes occurring in bulk, surface, locally or in long-range, including with the speciation by 2-dimensional scanning, and the time-resolution, by the implementation of the operando measurements. In organic media, the inhomogenisation of the cathode material during the aging process was investigated by the development of the special image treatment procedure for the maps, obtained from the transmission soft x-ray microscopy. It worth mentioning, that apart from the combination of the outcomes from the various x-ray measurements, the exploration of the new capabilities was also conducted, namely, probing the oxidation state of the element with the synchrotron-based 2-dimensional x-ray fluorescence technique, which, generally, with conventional set up, is not possible to achieve. The results and methodology from this thesis can, of course, be generalised on the characterisation of the other battery systems, and not only, as the x-ray techniques are one of the most informative and sophisticated methods for advanced structural investigation of the materials.
Resumo:
I plasmi freddi a pressione atmosferica (CAP) generati da scariche a barriera dielettrica (DBD) sono oggetto di studio e sviluppo per una gamma sempre più ampia di applicazioni in ambito biomedico e industriale come la sanificazione di alimenti e di packaging termosensibili. La sorgente sviluppata in questo progetto di tesi viene definita PASS, Plasma Assisted Sanification System essa è composto da una sorgente di plasma sDBD (surface dielectric barrier discharge), una camera di trattamento, un sistema di raffreddamento e un generatore di alta tensione. Questo progetto si concentra sulla caratterizzazione fisico-chimica di una sorgente di plasma sDBD sviluppata dal gruppo di ricerca in Applicazioni Industriali dei Plasmi (AIP - DIN - Alma Mater Studiorum). In primo luogo è stata svolta una caratterizzazione elettrica della sorgente variando la potenza agendo direttamente sul duty cycle da 100% a 10% tramite due metodi: un metodo convenzionale e con il metodo di Lissajous inserendo una capacità monitor C0 pari a 90,95 nF . Successivamente è stata studiata la cinetica delle concentrazioni di O3 e NO2 in fase gas mediante misure OAS. È stata inoltre monitorata la temperatura all’interno della camera di trattamento per verificare l’ipotesi di assenza di effetti termici durante il trattamento. Un’altra importante applicazione della sorgente di plasma utilizzata in questo è la produzione di acqua attivata al plasma (Plasma Activated Water, PAW). Le specie reattive dell’ossigeno (Reactive Oxygen Species, ROS) e dell’azoto (Reactive Nitrogen Species, RNS), vengono assorbite dal liquido dando origine a ulteriori reazioni chimiche come NO3-, NO2-, H2O2. I RONS influenzano e controllano molti processi nelle piante e sono responsabili del miglioramento della crescita delle piante. Per ogni campione di acqua attivata (PAW) sono stati misurati pH, conducibilità confrontati con la soluzione non trattata e concentrazione di specie reattive quali: H2O2, NO2- e NO3- .
Resumo:
The crystal structure and the local atomic order of a series of nanocrystalline ZrO(2)-CaO solid solutions with varying CaO content were studied by synchrotron radiation X-ray powder diffraction and extended X-ray absorption fine structure (EXAFS) spectroscopy. These samples were synthesized by a pH-controlled nitrate-glycine gel-combustion process. For CaO contents up to 8 mol%, the t' form of the tetragonal phase (c/a > 1) was identified, whereas for 10 and 12 mol% CaO, the t '' form (c/a=1; oxygen anions displaced from their ideal positions in the cubic phase) was detected. Finally, the cubic phase was observed for solid solutions with CaO content of 14 mol% CaO or higher. The t'/t '' and t ''/cubic compositional boundaries were determined to be at 9 (1) and 13 (1) mol% CaO, respectively. The EXAFS study demonstrated that this transition is related to a tetragonal-to-cubic symmetry change of the first oxygen coordination shell around the Zr atoms.