965 resultados para A posteriori error estimation
Resumo:
The relief of the seafloor is an important source of data for many scientists. In this paper we present an optical system to deal with underwater 3D reconstruction. This system is formed by three cameras that take images synchronously in a constant frame rate scheme. We use the images taken by these cameras to compute dense 3D reconstructions. We use Bundle Adjustment to estimate the motion ofthe trinocular rig. Given the path followed by the system, we get a dense map of the observed scene by registering the different dense local reconstructions in a unique and bigger one
Resumo:
Every year, flash floods cause economic losses and major problems for undertaking daily activity in the Catalonia region (NE Spain). Sometimes catastrophic damage and casualties occur. When a long term analysis of floods is undertaken, a question arises regarding the changing role of the vulnerability and the hazard in risk evolution. This paper sets out to give some information to deal with this question, on the basis of analysis of all the floods that have occurred in Barcelona county (Catalonia) since the 14th century, as well as the flooded area, urban evolution, impacts and the weather conditions for any of most severe events. With this objective, the identification and classification of historical floods, and characterisation of flash-floods among these, have been undertaken. Besides this, the main meteorological factors associated with recent flash floods in this city and neighbouring regions are well-known. On the other hand, the identification of rainfall trends that could explain the historical evolution of flood hazard occurrence in this city has been analysed. Finally, identification of the influence of urban development on the vulnerability to floods has been carried out. Barcelona city has been selected thanks to its long continuous data series (daily rainfall data series, since 1854; one of the longest rainfall rate series of Europe, since 1921) and for the accurate historical archive information that is available (since the Roman Empire for the urban evolution). The evolution of flood occurrence shows the existence of oscillations in the earlier and later modern-age periods that can be attributed to climatic variability, evolution of the perception threshold and changes in vulnerability. A great increase of vulnerability can be assumed for the period 1850¿1900. The analysis of the time evolution for the Barcelona rainfall series (1854¿2000) shows that no trend exists, although, due to changes in urban planning, flash-floods impact has altered over this time. The number of catastrophic flash floods has diminished, although the extraordinary ones have increased.
Resumo:
Tripping is considered a major cause of fall in older people. Therefore, foot clearance (i.e., height of the foot above ground during swing phase) could be a key factor to better understand the complex relationship between gait and falls. This paper presents a new method to estimate clearance using a foot-worn and wireless inertial sensor system. The method relies on the computation of foot orientation and trajectory from sensors signal data fusion, combined with the temporal detection of toe-off and heel-strike events. Based on a kinematic model that automatically estimates sensor position relative to the foot, heel and toe trajectories are estimated. 2-D and 3-D models are presented with different solving approaches, and validated against an optical motion capture system on 12 healthy adults performing short walking trials at self-selected, slow, and fast speed. Parameters corresponding to local minimum and maximum of heel and toe clearance were extracted and showed accuracy ± precision of 4.1 ± 2.3 cm for maximal heel clearance and 1.3 ± 0.9 cm for minimal toe clearance compared to the reference. The system is lightweight, wireless, easy to wear and to use, and provide a new and useful tool for routine clinical assessment of gait outside a dedicated laboratory.
Resumo:
Weather radar observations are currently the most reliable method for remote sensing of precipitation. However, a number of factors affect the quality of radar observations and may limit seriously automated quantitative applications of radar precipitation estimates such as those required in Numerical Weather Prediction (NWP) data assimilation or in hydrological models. In this paper, a technique to correct two different problems typically present in radar data is presented and evaluated. The aspects dealt with are non-precipitating echoes - caused either by permanent ground clutter or by anomalous propagation of the radar beam (anaprop echoes) - and also topographical beam blockage. The correction technique is based in the computation of realistic beam propagation trajectories based upon recent radiosonde observations instead of assuming standard radio propagation conditions. The correction consists of three different steps: 1) calculation of a Dynamic Elevation Map which provides the minimum clutter-free antenna elevation for each pixel within the radar coverage; 2) correction for residual anaprop, checking the vertical reflectivity gradients within the radar volume; and 3) topographical beam blockage estimation and correction using a geometric optics approach. The technique is evaluated with four case studies in the region of the Po Valley (N Italy) using a C-band Doppler radar and a network of raingauges providing hourly precipitation measurements. The case studies cover different seasons, different radio propagation conditions and also stratiform and convective precipitation type events. After applying the proposed correction, a comparison of the radar precipitation estimates with raingauges indicates a general reduction in both the root mean squared error and the fractional error variance indicating the efficiency and robustness of the procedure. Moreover, the technique presented is not computationally expensive so it seems well suited to be implemented in an operational environment.
Resumo:
The COMPTEL unidentified source GRO J1411-64 was observed by INTEGRAL, and its central part, also by XMM-Newton. The data analysis shows no hint for new detections at hard X-rays. The upper limits in flux herein presented constrain the energy spectrum of whatever was producing GRO J1411-64, imposing, in the framework of earlier COMPTEL observations, the existence of a peak in power output located somewhere between 300-700 keV for the so-called low state. The Circinus Galaxy is the only source detected within the 4$\sigma$ location error of GRO J1411-64, but can be safely excluded as the possible counterpart: the extrapolation of the energy spectrum is well below the one for GRO J1411-64 at MeV energies. 22 significant sources (likelihood $> 10$) were extracted and analyzed from XMM-Newton data. Only one of these sources, XMMU J141255.6-635932, is spectrally compatible with GRO J1411-64 although the fact the soft X-ray observations do not cover the full extent of the COMPTEL source position uncertainty make an association hard to quantify and thus risky. The unique peak of the power output at high energies (hard X-rays and gamma-rays) resembles that found in the SED seen in blazars or microquasars. However, an analysis using a microquasar model consisting on a magnetized conical jet filled with relativistic electrons which radiate through synchrotron and inverse Compton scattering with star, disk, corona and synchrotron photons shows that it is hard to comply with all observational constrains. This and the non-detection at hard X-rays introduce an a-posteriori question mark upon the physical reality of this source, which is discussed in some detail.
Resumo:
Monitoring the performance is a crucial task for elite sports during both training and competition. Velocity is the key parameter of performance in swimming, but swimming performance evaluation remains immature due to the complexities of measurements in water. The purpose of this study is to use a single inertial measurement unit (IMU) to estimate front crawl velocity. Thirty swimmers, equipped with an IMU on the sacrum, each performed four different velocity trials of 25 m in ascending order. A tethered speedometer was used as the velocity measurement reference. Deployment of biomechanical constraints of front crawl locomotion and change detection framework on acceleration signal paved the way for a drift-free integration of forward acceleration using IMU to estimate the swimmers velocity. A difference of 0.6 ± 5.4 cm · s(-1) on mean cycle velocity and an RMS difference of 11.3 cm · s(-1) in instantaneous velocity estimation were observed between IMU and the reference. The most important contribution of the study is a new practical tool for objective evaluation of swimming performance. A single body-worn IMU provides timely feedback for coaches and sport scientists without any complicated setup or restraining the swimmer's natural technique.
Resumo:
PURPOSE: To explore whether triaxial accelerometric measurements can be utilized to accurately assess speed and incline of running in free-living conditions. METHODS: Body accelerations during running were recorded at the lower back and at the heel by a portable data logger in 20 human subjects, 10 men, and 10 women. After parameterizing body accelerations, two neural networks were designed to recognize each running pattern and calculate speed and incline. Each subject ran 18 times on outdoor roads at various speeds and inclines; 12 runs were used to calibrate the neural networks whereas the 6 other runs were used to validate the model. RESULTS: A small difference between the estimated and the actual values was observed: the square root of the mean square error (RMSE) was 0.12 m x s(-1) for speed and 0.014 radiant (rad) (or 1.4% in absolute value) for incline. Multiple regression analysis allowed accurate prediction of speed (RMSE = 0.14 m x s(-1)) but not of incline (RMSE = 0.026 rad or 2.6% slope). CONCLUSION: Triaxial accelerometric measurements allows an accurate estimation of speed of running and incline of terrain (the latter with more uncertainty). This will permit the validation of the energetic results generated on the treadmill as applied to more physiological unconstrained running conditions.
Resumo:
L'utilisation efficace des systèmes géothermaux, la séquestration du CO2 pour limiter le changement climatique et la prévention de l'intrusion d'eau salée dans les aquifères costaux ne sont que quelques exemples qui démontrent notre besoin en technologies nouvelles pour suivre l'évolution des processus souterrains à partir de la surface. Un défi majeur est d'assurer la caractérisation et l'optimisation des performances de ces technologies à différentes échelles spatiales et temporelles. Les méthodes électromagnétiques (EM) d'ondes planes sont sensibles à la conductivité électrique du sous-sol et, par conséquent, à la conductivité électrique des fluides saturant la roche, à la présence de fractures connectées, à la température et aux matériaux géologiques. Ces méthodes sont régies par des équations valides sur de larges gammes de fréquences, permettant détudier de manières analogues des processus allant de quelques mètres sous la surface jusqu'à plusieurs kilomètres de profondeur. Néanmoins, ces méthodes sont soumises à une perte de résolution avec la profondeur à cause des propriétés diffusives du champ électromagnétique. Pour cette raison, l'estimation des modèles du sous-sol par ces méthodes doit prendre en compte des informations a priori afin de contraindre les modèles autant que possible et de permettre la quantification des incertitudes de ces modèles de façon appropriée. Dans la présente thèse, je développe des approches permettant la caractérisation statique et dynamique du sous-sol à l'aide d'ondes EM planes. Dans une première partie, je présente une approche déterministe permettant de réaliser des inversions répétées dans le temps (time-lapse) de données d'ondes EM planes en deux dimensions. Cette stratégie est basée sur l'incorporation dans l'algorithme d'informations a priori en fonction des changements du modèle de conductivité électrique attendus. Ceci est réalisé en intégrant une régularisation stochastique et des contraintes flexibles par rapport à la gamme des changements attendus en utilisant les multiplicateurs de Lagrange. J'utilise des normes différentes de la norme l2 pour contraindre la structure du modèle et obtenir des transitions abruptes entre les régions du model qui subissent des changements dans le temps et celles qui n'en subissent pas. Aussi, j'incorpore une stratégie afin d'éliminer les erreurs systématiques de données time-lapse. Ce travail a mis en évidence l'amélioration de la caractérisation des changements temporels par rapport aux approches classiques qui réalisent des inversions indépendantes à chaque pas de temps et comparent les modèles. Dans la seconde partie de cette thèse, j'adopte un formalisme bayésien et je teste la possibilité de quantifier les incertitudes sur les paramètres du modèle dans l'inversion d'ondes EM planes. Pour ce faire, je présente une stratégie d'inversion probabiliste basée sur des pixels à deux dimensions pour des inversions de données d'ondes EM planes et de tomographies de résistivité électrique (ERT) séparées et jointes. Je compare les incertitudes des paramètres du modèle en considérant différents types d'information a priori sur la structure du modèle et différentes fonctions de vraisemblance pour décrire les erreurs sur les données. Les résultats indiquent que la régularisation du modèle est nécessaire lorsqu'on a à faire à un large nombre de paramètres car cela permet d'accélérer la convergence des chaînes et d'obtenir des modèles plus réalistes. Cependent, ces contraintes mènent à des incertitudes d'estimations plus faibles, ce qui implique des distributions a posteriori qui ne contiennent pas le vrai modèledans les régions ou` la méthode présente une sensibilité limitée. Cette situation peut être améliorée en combinant des méthodes d'ondes EM planes avec d'autres méthodes complémentaires telles que l'ERT. De plus, je montre que le poids de régularisation des paramètres et l'écart-type des erreurs sur les données peuvent être retrouvés par une inversion probabiliste. Finalement, j'évalue la possibilité de caractériser une distribution tridimensionnelle d'un panache de traceur salin injecté dans le sous-sol en réalisant une inversion probabiliste time-lapse tridimensionnelle d'ondes EM planes. Etant donné que les inversions probabilistes sont très coûteuses en temps de calcul lorsque l'espace des paramètres présente une grande dimension, je propose une stratégie de réduction du modèle ou` les coefficients de décomposition des moments de Legendre du panache de traceur injecté ainsi que sa position sont estimés. Pour ce faire, un modèle de résistivité de base est nécessaire. Il peut être obtenu avant l'expérience time-lapse. Un test synthétique montre que la méthodologie marche bien quand le modèle de résistivité de base est caractérisé correctement. Cette méthodologie est aussi appliquée à un test de trac¸age par injection d'une solution saline et d'acides réalisé dans un système géothermal en Australie, puis comparée à une inversion time-lapse tridimensionnelle réalisée selon une approche déterministe. L'inversion probabiliste permet de mieux contraindre le panache du traceur salin gr^ace à la grande quantité d'informations a priori incluse dans l'algorithme. Néanmoins, les changements de conductivités nécessaires pour expliquer les changements observés dans les données sont plus grands que ce qu'expliquent notre connaissance actuelle des phénomenès physiques. Ce problème peut être lié à la qualité limitée du modèle de résistivité de base utilisé, indiquant ainsi que des efforts plus grands devront être fournis dans le futur pour obtenir des modèles de base de bonne qualité avant de réaliser des expériences dynamiques. Les études décrites dans cette thèse montrent que les méthodes d'ondes EM planes sont très utiles pour caractériser et suivre les variations temporelles du sous-sol sur de larges échelles. Les présentes approches améliorent l'évaluation des modèles obtenus, autant en termes d'incorporation d'informations a priori, qu'en termes de quantification d'incertitudes a posteriori. De plus, les stratégies développées peuvent être appliquées à d'autres méthodes géophysiques, et offrent une grande flexibilité pour l'incorporation d'informations additionnelles lorsqu'elles sont disponibles. -- The efficient use of geothermal systems, the sequestration of CO2 to mitigate climate change, and the prevention of seawater intrusion in coastal aquifers are only some examples that demonstrate the need for novel technologies to monitor subsurface processes from the surface. A main challenge is to assure optimal performance of such technologies at different temporal and spatial scales. Plane-wave electromagnetic (EM) methods are sensitive to subsurface electrical conductivity and consequently to fluid conductivity, fracture connectivity, temperature, and rock mineralogy. These methods have governing equations that are the same over a large range of frequencies, thus allowing to study in an analogous manner processes on scales ranging from few meters close to the surface down to several hundreds of kilometers depth. Unfortunately, they suffer from a significant resolution loss with depth due to the diffusive nature of the electromagnetic fields. Therefore, estimations of subsurface models that use these methods should incorporate a priori information to better constrain the models, and provide appropriate measures of model uncertainty. During my thesis, I have developed approaches to improve the static and dynamic characterization of the subsurface with plane-wave EM methods. In the first part of this thesis, I present a two-dimensional deterministic approach to perform time-lapse inversion of plane-wave EM data. The strategy is based on the incorporation of prior information into the inversion algorithm regarding the expected temporal changes in electrical conductivity. This is done by incorporating a flexible stochastic regularization and constraints regarding the expected ranges of the changes by using Lagrange multipliers. I use non-l2 norms to penalize the model update in order to obtain sharp transitions between regions that experience temporal changes and regions that do not. I also incorporate a time-lapse differencing strategy to remove systematic errors in the time-lapse inversion. This work presents improvements in the characterization of temporal changes with respect to the classical approach of performing separate inversions and computing differences between the models. In the second part of this thesis, I adopt a Bayesian framework and use Markov chain Monte Carlo (MCMC) simulations to quantify model parameter uncertainty in plane-wave EM inversion. For this purpose, I present a two-dimensional pixel-based probabilistic inversion strategy for separate and joint inversions of plane-wave EM and electrical resistivity tomography (ERT) data. I compare the uncertainties of the model parameters when considering different types of prior information on the model structure and different likelihood functions to describe the data errors. The results indicate that model regularization is necessary when dealing with a large number of model parameters because it helps to accelerate the convergence of the chains and leads to more realistic models. These constraints also lead to smaller uncertainty estimates, which imply posterior distributions that do not include the true underlying model in regions where the method has limited sensitivity. This situation can be improved by combining planewave EM methods with complimentary geophysical methods such as ERT. In addition, I show that an appropriate regularization weight and the standard deviation of the data errors can be retrieved by the MCMC inversion. Finally, I evaluate the possibility of characterizing the three-dimensional distribution of an injected water plume by performing three-dimensional time-lapse MCMC inversion of planewave EM data. Since MCMC inversion involves a significant computational burden in high parameter dimensions, I propose a model reduction strategy where the coefficients of a Legendre moment decomposition of the injected water plume and its location are estimated. For this purpose, a base resistivity model is needed which is obtained prior to the time-lapse experiment. A synthetic test shows that the methodology works well when the base resistivity model is correctly characterized. The methodology is also applied to an injection experiment performed in a geothermal system in Australia, and compared to a three-dimensional time-lapse inversion performed within a deterministic framework. The MCMC inversion better constrains the water plumes due to the larger amount of prior information that is included in the algorithm. The conductivity changes needed to explain the time-lapse data are much larger than what is physically possible based on present day understandings. This issue may be related to the base resistivity model used, therefore indicating that more efforts should be given to obtain high-quality base models prior to dynamic experiments. The studies described herein give clear evidence that plane-wave EM methods are useful to characterize and monitor the subsurface at a wide range of scales. The presented approaches contribute to an improved appraisal of the obtained models, both in terms of the incorporation of prior information in the algorithms and the posterior uncertainty quantification. In addition, the developed strategies can be applied to other geophysical methods, and offer great flexibility to incorporate additional information when available.
Resumo:
Optimal behavior relies on flexible adaptation to environmental requirements, notably based on the detection of errors. The impact of error detection on subsequent behavior typically manifests as a slowing down of RTs following errors. Precisely how errors impact the processing of subsequent stimuli and in turn shape behavior remains unresolved. To address these questions, we used an auditory spatial go/no-go task where continual feedback informed participants of whether they were too slow. We contrasted auditory-evoked potentials to left-lateralized go and right no-go stimuli as a function of performance on the preceding go stimuli, generating a 2 × 2 design with "preceding performance" (fast hit [FH], slow hit [SH]) and stimulus type (go, no-go) as within-subject factors. SH trials yielded SH trials on the following trials more often than did FHs, supporting our assumption that SHs engaged effects similar to errors. Electrophysiologically, auditory-evoked potentials modulated topographically as a function of preceding performance 80-110 msec poststimulus onset and then as a function of stimulus type at 110-140 msec, indicative of changes in the underlying brain networks. Source estimations revealed a stronger activity of prefrontal regions to stimuli after successful than error trials, followed by a stronger response of parietal areas to the no-go than go stimuli. We interpret these results in terms of a shift from a fast automatic to a slow controlled form of inhibitory control induced by the detection of errors, manifesting during low-level integration of task-relevant features of subsequent stimuli, which in turn influences response speed.
Resumo:
This paper presents a new respiratory impedance estimator to minimize the error due to breathing. Its practical reliability was evaluated in a simulation using realistic signals. These signals were generated by superposing pressure and flow records obtained in two conditions: 1) when applying forced oscillation to a resistance- inertance- elastance (RIE) mechanical model; 2) when healthy subjects breathed through the unexcited forced oscillation generator. Impedances computed (4-32 Hz) from the simulated signals with the new estimator resulted in a mean value which was scarcely biased by the added breathing (errors less than 1 percent in the mean R, I , and E ) and had a small variability (coefficients of variation of R, I, and E of 1.3, 3.5, and 9.6 percent, respectively). Our results suggest that the proposed estimator reduces the error in measurement of respiratory impedance without appreciable extracomputational cost.
Resumo:
Silene dioica is a diploid, dioecious, perennial, insect-pollinated herb and part of the deciduous phase of primary succession in Skeppsvik Archipelago, Gulf of Bothnia, Sweden. These islands are composed of material deposited and left underwater by melting ice at the end of the last ice age. A rapid and relatively constant rate of land uplift of 0.9 cm per year continually creates new islands available for colonization by plants. Because the higher deposits appear first, islands differ in age. Because it is possible to estimate the ages of islands and populations of plant species belonging to early stages of succession, the genetic dynamics occurring within an age-structured metapopulation can be investigated in this archipelago. Fifty-two island populations of S. dioica of known ages, sizes, and distances from each other were studied through electrophoretic data. A number of factors increase the degree of genetic differentiation among these island populations relative to an island model at equilibrium. Newly founded populations were more differentiated than those of intermediate age, which suggests that colonization dynamics increase genetic variance among populations. The very old populations, which decrease in size as they approach extinction, were more differentiated than intermediate-aged populations. Isolation by distance occurs in this system. Colonizers are likely to come from more than one source, and the migrant pool model best explains colonization events in the archipelago. Degree of environmental exposure also affects population differentiation.
Resumo:
[cat] Es presenta un estimador nucli transformat que és adequat per a distribucions de cua pesada. Utilitzant una transformació basada en la distribució de probabilitat Beta l’elecció del paràmetre de finestra és molt directa. Es presenta una aplicació a dades d’assegurances i es mostra com calcular el Valor en Risc.
Resumo:
In agriculture, the soil strength is used to describe the susceptibility to deformation by pressure caused by agricultural machine. The purpose of this study was to compare different methods for estimating the inherent soil strength and to identify their suitability for the evaluation of load support capacity, compaction susceptibility and root growth. The physical, chemical, mineralogical and intrinsic strength properties of seven soil samples, collected from five sampling pits at different locations in Brazil, were measured. Four clay (CS) and three sandy clay loam (SCL) soils were used. The clay soils were collected on a farm in Santo Ângelo, RS (28 º 16 ' 16 '' S; 54 º 13 ' 11 '' W 290 m); A and B horizons at the Universidade Federal de Lavras, Lavras, MG (21 º 13 ' 47 '' S; 44 º 58 ' 6'' W; 918 m) and on the farm Sygenta, in Uberlandia, MG (18 º 58 ' 37 '' S; 48 º 12 ' 05 '' W 866 m). The sandy clay loam soils were collected in Aracruz, ES (19 º 47 ' 10 '' S; 40 º 16 ' 29 '' W 81 m), and on the farm Xavier, Lavras, MG (21 º 13 ' 24 '' S; 45 º 05 ' 00 '' W; 844 m). Soil strength was estimated based on measurements of: (a) a pneumatic consolidometer, (b) manual pocket (non-rotating) penetrometer; and (c) automatic (rotating) penetrometer. The results of soil strength properties were similar by the three methods. The soil structure had a significant influence on soil strength. Results of measurements with both the manual pocket and the electric penetrometer were similar, emphasizing the influence of soil texture. The data showed that, to enhance the reliability of predictions of preconsolidation pressure by penetrometers, it is better to separate the soils into the different classes, rather than analyze them jointly. It can be concluded that the consolidometer method, although expensive, is the best when evaluations of load support capacity and compaction susceptibility of soil samples are desired.