930 resultados para time sensitive window


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The epidemic of obesity is impacting an increasing proportion of children, adolescents and adults with a common feature being low levels of physical activity (PA). Despite having more knowledge than ever before about the benefits of PA for health and the growth and development of youngsters, we are only paying lip-service to the development of motor skills in children. Fun, enjoyment and basic skills are the essential underpinnings of meaningful participation in PA. A concurrent problem is the reported increase in sitting time with the most common sedentary behaviors being TV viewing and other screen-based games. Limitations of time have contributed to a displacement of active behaviors with inactive pursuits, which has contributed to reductions in activity energy expenditure. To redress the energy imbalance in overweight and obese children, we urgently need out-of-the-box multisectoral solutions. There is little to be gained from a shame and blame mentality where individuals, their parents, teachers and other groups are singled out as causes of the problem. Such an approach does little more than shift attention from the main game of prevention and management of the condition, which requires a concerted, whole-of-government approach (in each country). The failure to support and encourage all young people to participate in regular PA will increase the chance that our children will live shorter and less healthy lives than their parents. In short, we need novel environmental approaches to foster a systematic increase in PA. This paper provides examples of opportunities and challenges for PA strategies to prevent obesity with a particular emphasis on the school and home settings.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper techniques for scheduling additional train services (SATS) are considered as is train scheduling involving general time window constraints, fixed operations, maintenance activities and periods of section unavailability. The SATS problem is important because additional services must often be given access to the railway and subsequently integrated into current timetables. The SATS problem therefore considers the competition for railway infrastructure between new services and existing services belonging to the same or different operators. The SATS problem is characterised as a hybrid job shop scheduling problem with time window constraints. To solve this problem constructive algorithm and metaheuristic scheduling techniques that operate upon a disjunctive graph model of train operations are utilised. From numerical investigations the proposed framework and associated techniques are tested and shown to be effective.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Technological and societal change, along with organisational and market change (driven by contracting-out and privatisation), are “creating a new generation of infrastructures” [1]. While inter-organisational contractual arrangements can improve maintenance efficiency through consistent and repeatable patterns of action - unanticipated difficulties in implementation can reduce the performance of these arrangements. When faced with unsatisfactory performance of contracting-out arrangements, government organisations may choose to adapt and change these arrangements over time, with the aim of improving performance. This paper enhances our understanding of ‘next generation infrastructures’ by examining adaptation of the organisational arrangements for the maintenance of these assets, in a case study spanning 20 years.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reports on the reemergence of a concern with planning city centers as focal points in the 1980s. De-industrialization of older industrial areas; Revalorization of city center sites; Emergence of city-to-city competitiveness at a national and supranational level.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper investigates the robust H∞ control for Takagi-Sugeno (T-S) fuzzy systems with interval time-varying delay. By employing a new and tighter integral inequality and constructing an appropriate type of Lyapunov functional, delay-dependent stability criteria are derived for the control problem. Because neither any model transformation nor free weighting matrices are employed in our theoretical derivation, the developed stability criteria significantly improve and simplify the existing stability conditions. Also, the maximum allowable upper delay bound and controller feedback gains can be obtained simultaneously from the developed approach by solving a constrained convex optimization problem. Numerical examples are given to demonstrate the effectiveness of the proposed methods.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

While increasing numbers of young high school students engage in part-time work, there is no consensus about its impact on educational outcomes. Indeed this field has had a dearth of research. The present paper presents a review of recent research, primarily from Australia and the US, although it is acknowledged that there are considerable contextual differences. Suggestions for school counsellors to harness the students’ experiences to assist in educational and career decision-making are presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Financial processes may possess long memory and their probability densities may display heavy tails. Many models have been developed to deal with this tail behaviour, which reflects the jumps in the sample paths. On the other hand, the presence of long memory, which contradicts the efficient market hypothesis, is still an issue for further debates. These difficulties present challenges with the problems of memory detection and modelling the co-presence of long memory and heavy tails. This PhD project aims to respond to these challenges. The first part aims to detect memory in a large number of financial time series on stock prices and exchange rates using their scaling properties. Since financial time series often exhibit stochastic trends, a common form of nonstationarity, strong trends in the data can lead to false detection of memory. We will take advantage of a technique known as multifractal detrended fluctuation analysis (MF-DFA) that can systematically eliminate trends of different orders. This method is based on the identification of scaling of the q-th-order moments and is a generalisation of the standard detrended fluctuation analysis (DFA) which uses only the second moment; that is, q = 2. We also consider the rescaled range R/S analysis and the periodogram method to detect memory in financial time series and compare their results with the MF-DFA. An interesting finding is that short memory is detected for stock prices of the American Stock Exchange (AMEX) and long memory is found present in the time series of two exchange rates, namely the French franc and the Deutsche mark. Electricity price series of the five states of Australia are also found to possess long memory. For these electricity price series, heavy tails are also pronounced in their probability densities. The second part of the thesis develops models to represent short-memory and longmemory financial processes as detected in Part I. These models take the form of continuous-time AR(∞) -type equations whose kernel is the Laplace transform of a finite Borel measure. By imposing appropriate conditions on this measure, short memory or long memory in the dynamics of the solution will result. A specific form of the models, which has a good MA(∞) -type representation, is presented for the short memory case. Parameter estimation of this type of models is performed via least squares, and the models are applied to the stock prices in the AMEX, which have been established in Part I to possess short memory. By selecting the kernel in the continuous-time AR(∞) -type equations to have the form of Riemann-Liouville fractional derivative, we obtain a fractional stochastic differential equation driven by Brownian motion. This type of equations is used to represent financial processes with long memory, whose dynamics is described by the fractional derivative in the equation. These models are estimated via quasi-likelihood, namely via a continuoustime version of the Gauss-Whittle method. The models are applied to the exchange rates and the electricity prices of Part I with the aim of confirming their possible long-range dependence established by MF-DFA. The third part of the thesis provides an application of the results established in Parts I and II to characterise and classify financial markets. We will pay attention to the New York Stock Exchange (NYSE), the American Stock Exchange (AMEX), the NASDAQ Stock Exchange (NASDAQ) and the Toronto Stock Exchange (TSX). The parameters from MF-DFA and those of the short-memory AR(∞) -type models will be employed in this classification. We propose the Fisher discriminant algorithm to find a classifier in the two and three-dimensional spaces of data sets and then provide cross-validation to verify discriminant accuracies. This classification is useful for understanding and predicting the behaviour of different processes within the same market. The fourth part of the thesis investigates the heavy-tailed behaviour of financial processes which may also possess long memory. We consider fractional stochastic differential equations driven by stable noise to model financial processes such as electricity prices. The long memory of electricity prices is represented by a fractional derivative, while the stable noise input models their non-Gaussianity via the tails of their probability density. A method using the empirical densities and MF-DFA will be provided to estimate all the parameters of the model and simulate sample paths of the equation. The method is then applied to analyse daily spot prices for five states of Australia. Comparison with the results obtained from the R/S analysis, periodogram method and MF-DFA are provided. The results from fractional SDEs agree with those from MF-DFA, which are based on multifractal scaling, while those from the periodograms, which are based on the second order, seem to underestimate the long memory dynamics of the process. This highlights the need and usefulness of fractal methods in modelling non-Gaussian financial processes with long memory.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Survey-based health research is in a boom phase following an increased amount of health spending in OECD countries and the interest in ageing. A general characteristic of survey-based health research is its diversity. Different studies are based on different health questions in different datasets; they use different statistical techniques; they differ in whether they approach health from an ordinal or cardinal perspective; and they differ in whether they measure short-term or long-term effects. The question in this paper is simple: do these differences matter for the findings? We investigate the effects of life-style choices (drinking, smoking, exercise) and income on six measures of health in the US Health and Retirement Study (HRS) between 1992 and 2002: (1) self-assessed general health status, (2) problems with undertaking daily tasks and chores, (3) mental health indicators, (4) BMI, (5) the presence of serious long-term health conditions, and (6) mortality. We compare ordinal models with cardinal models; we compare models with fixed effects to models without fixed-effects; and we compare short-term effects to long-term effects. We find considerable variation in the impact of different determinants on our chosen health outcome measures; we find that it matters whether ordinality or cardinality is assumed; we find substantial differences between estimates that account for fixed effects versus those that do not; and we find that short-run and long-run effects differ greatly. All this implies that health is an even more complicated notion than hitherto thought, defying generalizations from one measure to the others or one methodology to another.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we consider a time-space fractional diffusion equation of distributed order (TSFDEDO). The TSFDEDO is obtained from the standard advection-dispersion equation by replacing the first-order time derivative by the Caputo fractional derivative of order α∈(0,1], the first-order and second-order space derivatives by the Riesz fractional derivatives of orders β 1∈(0,1) and β 2∈(1,2], respectively. We derive the fundamental solution for the TSFDEDO with an initial condition (TSFDEDO-IC). The fundamental solution can be interpreted as a spatial probability density function evolving in time. We also investigate a discrete random walk model based on an explicit finite difference approximation for the TSFDEDO-IC.