928 resultados para sudden deafness
Resumo:
Early warning systems (EWSs) rely on the capacity to forecast a dangerous event with a certain amount of advance by defining warning criteria on which the safety of the population will depend. Monitoring of landslides is facilitated by new technologies, decreasing prices and easier data processing. At the same time, predicting the onset of a rapid failure or the sudden transition from slow to rapid failure and subsequent collapse, and its consequences is challenging for scientists that must deal with uncertainties and have limited tools to do so. Furthermore, EWS and warning criteria are becoming more and more a subject of concern between technical experts, researchers, stakeholders and decision makers responsible for the activation, enforcement and approval of civil protection actions. EWSs imply also a sharing of responsibilities which is often averted by technical staff, managers of technical offices and governing institutions. We organized the First International Workshop on Warning Criteria for Active Slides (IWWCAS) to promote sharing and networking among members from specialized institutions and relevant experts of EWS. In this paper, we summarize the event to stimulate discussion and collaboration between organizations dealing with the complex task of managing hazard and risk related to active slides.
Resumo:
The purpose of this work was to design and carry out thermal-hydraulic experiments dealing with overcooling transients of a VVER-440-type nuclear reactor pressure vessel. Sudden overcooling accident could have negative effect on the mechanical strength of the pressure vessel. If part of the pressure vessel is compromised, the intense pressure inside a pressurized water reactor could cause the wall to fracture. Information on the heat transfer along the outside of the pressure vessel wall is necessary for stress analysis. Basic knowledge of the overcooling accident and heat transfer types on the outside of the pressure vessel is presented as background information. Test facility was designed and built based to study and measure heat transfer during specific overcooling scenarios. Two test series were conducted with the first one concentrating on the very beginning of the transient and the second one concentrating on steady state heat transfer. Heat transfer coefficients are calculated from the test data using an inverse method, which yields better results in fast transients than direct calculation from the measurement results. The results show that heat transfer rate varies considerably during the transient, being very high in the beginning and dropping to steady state in a few minutes. The test results show that appropriate correlations can be used in future analysis.
Resumo:
Resting 12-lead electrocardiogram (ECG) has been employed in the evaluation of young asymptomatic subjects to detect pre-existing heart diseases. Although the incorporation of routine ECG remains controversial, there is increasing evidence that cardiomyopathies and ion channelopathies show ECG changes as the initial manifestation. The causes of sudden cardiac death in young people show a significant geographical variation. We aim to determine the prevalence and spectrum of ECG findings in a youth population. Methodology: From May 2010 to April 2013, a total of 976 young secondary school students (mean age, 14 years; range, 13-15) underwent voluntary medical screening that included a resting 12-lead ECG and structured clinical survey. Subjects with abnormal ECG findings were classified into two groups: major ECG findings group, which fulfilled a pre-specified checklist to screen for principal structural and electrical cardiopathies, and minor ECG findings group showing other ECG changes. The major ECG findings group was referred for secondary diagnostic tests at a tertiary institution. Results: Of the 976 subjects screened, 252 (25.82%; CI95%, 23.17-28.66) had ECG findings. Of note, 17 (1.74%) had major findings and 235 (24.08%) had minor findings on ECG. The prevalence of cardiovascular pathology within the major ECG findings group was 35.29%. The prevalence of ECG abnormalities was significantly higher in males than in females (29% vs 20.9%, P<0.01). Conclusions: The prevalence of ECG findings in a youth population was 25.82%. There were significant gender differences. The inclusion of universal ECG screening, in addition to medical history, may increase the sensitivity of a cardiovascular screening program. Knowledge of the spectrum and prevalence of ECG findings and disease conditions would be pivotal in designing customized screening programs
Resumo:
S'analitzen diversos caràcters morfomètrics i índexs relacionats amb la reproducció d'una mostra de 260 exemplars de Scorpaena notata. La proporció de mascles és molt més elevada que la de femelles, especialment a les talles més grosses. Les variacions estacionals de l'índex gonadosomitic (IGS) indiquen que aquesta espècie es reprodueix a l'estiu i principi de tardor, hipòtesi confirmada per l'estat de maduració de lesgònades observades. Així mateix, la disminució brusca que pateix l'index hepatosomàtic (MS) a la tardor posa de manifest que les reserves hepàtiques han estat utilitzades per a la posta
Resumo:
This dissertation "Identification of turning points in the research on titanium dioxide production and application" aims at detecting in scientific literatures emerging trends and sudden changes in titanium dioxide production and application. These key changes are then studied to determine its transient patterns and its effect on the research on titanium dioxide production and application The source of information is from bibliographic data which discussed titanium dioxide production and application. These bibliographic data where obtained from ISI Web of Knowledge and then formed into a network of clusters by applying software called Citespace.
Resumo:
Evergreen trees in the Mediterranean region must cope with a wide range of environmental stresses from summer drought to winter cold. The mildness of Mediterranean winters can periodically lead to favourable environmental conditions above the threshold for a positive carbon balance, benefitting evergreen woody species more than deciduous ones. The comparatively lower solar energy input in winter decreases the foliar light saturation point. This leads to a higher susceptibility to photoinhibitory stress especially when chilly (< 12 C) or freezing temperatures (< 0 C) coincide with clear skies and relatively high solar irradiances. Nonetheless, the advantage of evergreen species that are able to photosynthesize all year round where a significant fraction can be attributed to winter months, compensates for the lower carbon uptake during spring and summer in comparison to deciduous species. We investigated the ecophysiological behaviour of three co-occurring mature evergreen tree species (Quercus ilex L., Pinus halepensis Mill., and Arbutus unedo L.). Therefore, we collected twigs from the field during a period of mild winter conditions and after a sudden cold period. After both periods, the state of the photosynthetic machinery was tested in the laboratory by estimating the foliar photosynthetic potential with CO2 response curves in parallel with chlorophyll fluorescence measurements. The studied evergreen tree species benefited strongly from mild winter conditions by exhibiting extraordinarily high photosynthetic potentials. A sudden period of frost, however, negatively affected the photosynthetic apparatus, leading to significant decreases in key physiological parameters such as the maximum carboxylation velocity (Vc,max), the maximum photosynthetic electron transport rate (Jmax), and the optimal fluorometric quantum yield of photosystem II (Fv/Fm). The responses of Vc,max and Jmax were highly species specific, with Q. ilex exhibiting the highest and P. halepensis the lowest reductions. In contrast, the optimal fluorometric quantum yield of photosystem II (Fv/Fm) was significantly lower in A. unedo after the cold period. The leaf position played an important role in Q. ilex showing a stronger winter effect on sunlit leaves in comparison to shaded leaves. Our results generally agreed with the previous classifications of photoinhibition-tolerant (P. halepensis) and photoinhibitionavoiding (Q. ilex) species on the basis of their susceptibility to dynamic photoinhibition, whereas A. unedo was the least tolerant to photoinhibition, which was chronic in this species. Q. ilex and P. halepensis seem to follow contrasting photoprotective strategies. However, they seemed equally successful under the prevailing conditions exhibiting an adaptive advantage over A. unedo. These results show that our understanding of the dynamics of interspecific competition in Mediterranean ecosystems requires consideration of the physiological behaviour during winter which may have important implications for long-term carbon budgets and growth trends.
Resumo:
The oceanographic work realized during 10 days in the surroundings of the eruptive island of Trindade, 20º30'36" lat. S - 29º19'26" long. W, had as principal aim the determination of the insular plateau, whose knowledge was very insufficient. Thus were established some oceanographic stations and sounding lines were realized by means of an echobathymeter whose responses were initially verified with mechanical soundings obtaneid by means of a Thomson sounder. The insular plateau is very narrow and exhibits a sudden fall between the 100 and 120 m. depth line at 740 m. - 2950 m. from the coast. Its greatest depth is of 108,30 m. and its mean inclination is of 8,12%. The plateau of the island of Trindade is separated from that of the neighbouring group of Martim Yaz by great depths. The bottoms are rocky near the coast, the blocks having been produced by the rupture of the magmatic mass of the island. Further away from the coast, the size of the rocks gradually diminishes up to the fine sand thickness. In the litoral zone there are abundant tufts of living Lithothamnion with a rich associated flora and fauna, which partly covers the rocks themselves. Further off at sea, the spheres of the dead alga with its commensals are cimented together by sedimentation. The spheres are further broken up and become an integrating part of the sand. The results of the physical and chemical analyses of the sand bottoms are shown in tables 2 and 3. The coast is either of abrupt rocky walls falling down to sea level, or of shores, made of pebbles or of sand. Anyhow, there are frequently Lithothamnion terraces slightly inclinated towards the bottom (chemical analysis table 1).
Resumo:
Mining has severe impacts on its surrounding. Particularly in the developing countries it has degraded the environment and signigicantly altered the socio-economical dynamics of the hosts. Especially relocation disrupts people from their homes, livelihoods, cultures and social activities. Mining industry has failed to develop the local host and streghten its governance structures; instead it has further degraded the development of mineral rich third world countries, which are among the world poorest ones. Cash flows derived from mining companies have not benefitted the crass-root level that however, bears most of the detrimental impacts. Especially if the governance structure of the host is weak, the sudden wealth is likely to accelerate disparities, corruption and even fuel wars. Environmental degradation, miscommunication, mistrust and disputes over land use have created conflicts between the communities and a mining company in Obuasi, Ghana; a case study of this thesis. The disputes are deeply rooted and further fuelled by unrealistic expectations and broken promises. The relations with artisanal and illegal miners have been especially troublesome. Illegal activities, mainly encroachment of the land and assets of the mine, such as vandalising tailings pipes have resulted in profits losses, environmental degradation and security hazards. All challenges mentioned above have to be addressed locally with site-specific solutions. It is vital to increase two-way communication, initiate collaboration and build capacity of the stakeholders such as local communities, NGOs and governance authorities. The locals must be engaged to create livelihood opportunities that are designed with and for them. Capacity can also be strengthened through education and skills training, such as women’s literacy programs. In order to diminish the overdependence of locals to the mine, the activities have to be self -sufficient and able to survive without external financial and managerial inputs. Additionally adequate and fair compensation practises and dispute resolution methods that are understood and accepted by all parties have to be agreed on as early as possible.
Resumo:
Blood flow in human aorta is an unsteady and complex phenomenon. The complex patterns are related to the geometrical features like curvature, bends, and branching and pulsatile nature of flow from left ventricle of heart. The aim of this work was to understand the effect of aorta geometry on the flow dynamics. To achieve this, 3D realistic and idealized models of descending aorta were reconstructed from Computed Tomography (CT) images of a female patient. The geometries were reconstructed using medical image processing code. The blood flow in aorta was assumed to be laminar and incompressible and the blood was assumed to be Newtonian fluid. A time dependent pulsatile and parabolic boundary condition was deployed at inlet. Steady and unsteady blood flow simulations were performed in real and idealized geometries of descending aorta using a Finite Volume Method (FVM) code. Analysis of Wall Shear Stress (WSS) distribution, pressure distribution, and axial velocity profiles were carried out in both geometries at steady and unsteady state conditions. The results obtained in thesis work reveal that the idealization of geometry underestimates the values of WSS especially near the region with sudden change of diameter. However, the resultant pressure and velocity in idealized geometry are close to those in real geometry
Resumo:
In this Thesis I discuss the exact dynamics of simple non-Markovian systems. I focus on fundamental questions at the core of non-Markovian theory and investigate the dynamics of quantum correlations under non-Markovian decoherence. In the first context I present the connection between two different non-Markovian approaches, and compare two distinct definitions of non-Markovianity. The general aim is to characterize in exemplary cases which part of the environment is responsible for the feedback of information typical of non- Markovian dynamics. I also show how such a feedback of information is not always described by certain types of master equations commonly used to tackle non-Markovian dynamics. In the second context I characterize the dynamics of two qubits in a common non-Markovian reservoir, and introduce a new dynamical effect in a wellknown model, i.e., two qubits under depolarizing channels. In the first model the exact solution of the dynamics is found, and the entanglement behavior is extensively studied. The non-Markovianity of the reservoir and reservoirmediated-interaction between the qubits cause non-trivial dynamical features. The dynamical interplay between different types of correlations is also investigated. In the second model the study of quantum and classical correlations demonstrates the existence of a new effect: the sudden transition between classical and quantum decoherence. This phenomenon involves the complete preservation of the initial quantum correlations for long intervals of time of the order of the relaxation time of the system.
Resumo:
A high-speed and high-voltage solid-rotor induction machine provides beneficial features for natural gas compressor technology. The mechanical robustness of the machine enables its use in an integrated motor-compressor. The technology uses a centrifugal compressor, which is mounted on the same shaft with the high-speed electrical machine driving it. No gearbox is needed as the speed is determined by the frequency converter. The cooling is provided by the process gas, which flows through the motor and is capable of transferring the heat away from the motor. The technology has been used in the compressors in the natural gas supply chain in the central Europe. New areas of application include natural gas compressors working at the wellheads of the subsea gas reservoir. A key challenge for the design of such a motor is the resistance of the stator insulation to the raw natural gas from the well. The gas contains water and heavy hydrocarbon compounds and it is far harsher than the sales gas in the natural gas supply network. The objective of this doctoral thesis is to discuss the resistance of the insulation to the raw natural gas and the phenomena degrading the insulation. The presence of partial discharges is analyzed in this doctoral dissertation. The breakdown voltage of the gas is measured as a function of pressure and gap distance. The partial discharge activity is measured on small samples representing the windings of the machine. The electrical field behavior is also modeled by finite element methods. Based on the measurements it has been concluded that the discharges are expected to disappear at gas pressures above 4 – 5 bar. The disappearance of discharges is caused by the breakdown strength of the gas, which increases as the pressure increases. Based on the finite element analysis, the physical length of a discharge seen in the PD measurements at atmospheric pressure was approximated to be 40 – 120 m. The chemical aging of the insulation when exposed to raw natural gas is discussed based on a vast set of experimental tests with the gas mixture representing the real gas mixture at the wellhead. The mixture was created by mixing dry hydrocarbon gas, heavy hydrocarbon compounds, monoethylene glycol, and water. The mixture was chosen to be more aggressive by increasing the amount of liquid substances. Furthermore, the temperature and pressure were increased, which resulted in accelerated test conditions. The time required to detect severe degradation was thus decreased. The test program included a comparison of materials, an analysis of the e ects of di erent compounds in the gas mixture, namely water and heavy hydrocarbons, on the aging, an analysis of the e ects of temperature and exposure duration, and also an analysis on the e ect of sudden pressure changes on the degradation of the insulating materials. It was found in the tests that an insulation consisting of mica, glass, and epoxy resin can tolerate the raw natural gas, but it experiences some degradation. The key material in the composite insulation is the resin, which largely defines the performance of the insulation system. The degradation of the insulation is mostly determined by the amount of gas mixture di used into it. The di usion was seen to follow Fick’s second law, but the coe cients were not accurately defined. The di usion was not sensitive to temperature, but it was dependent upon the thermodynamic state of the gas mixture, in other words, the amounts of liquid components in the gas. The weight increase observed was mostly related to heavy hydrocarbon compounds, which act as plasticizers in the epoxy resin. The di usion of these compounds is determined by the crosslink density of the resin. Water causes slight changes in the chemical structure, but these changes do not significantly contribute to the aging phenomena. Sudden changes in pressure can lead to severe damages in the insulation, because the motion of the di used gas is able to create internal cracks in the insulation. Therefore, the di usion only reduces the mechanical strength of the insulation, but the ultimate breakdown can potentially be caused by a sudden drop in the pressure of the process gas.
Resumo:
Bakgrunden och inspirationen till föreliggande studie är tidigare forskning i tillämpningar på randidentifiering i metallindustrin. Effektiv randidentifiering möjliggör mindre säkerhetsmarginaler och längre serviceintervall för apparaturen i industriella högtemperaturprocesser, utan ökad risk för materielhaverier. I idealfallet vore en metod för randidentifiering baserad på uppföljning av någon indirekt variabel som kan mätas rutinmässigt eller till en ringa kostnad. En dylik variabel för smältugnar är temperaturen i olika positioner i väggen. Denna kan utnyttjas som insignal till en randidentifieringsmetod för att övervaka ugnens väggtjocklek. Vi ger en bakgrund och motivering till valet av den geometriskt endimensionella dynamiska modellen för randidentifiering, som diskuteras i arbetets senare del, framom en flerdimensionell geometrisk beskrivning. I de aktuella industriella tillämpningarna är dynamiken samt fördelarna med en enkel modellstruktur viktigare än exakt geometrisk beskrivning. Lösningsmetoder för den s.k. sidledes värmeledningsekvationen har många saker gemensamt med randidentifiering. Därför studerar vi egenskaper hos lösningarna till denna ekvation, inverkan av mätfel och något som brukar kallas förorening av mätbrus, regularisering och allmännare följder av icke-välställdheten hos sidledes värmeledningsekvationen. Vi studerar en uppsättning av tre olika metoder för randidentifiering, av vilka de två första är utvecklade från en strikt matematisk och den tredje från en mera tillämpad utgångspunkt. Metoderna har olika egenskaper med specifika fördelar och nackdelar. De rent matematiskt baserade metoderna karakteriseras av god noggrannhet och låg numerisk kostnad, dock till priset av låg flexibilitet i formuleringen av den modellbeskrivande partiella differentialekvationen. Den tredje, mera tillämpade, metoden kännetecknas av en sämre noggrannhet förorsakad av en högre grad av icke-välställdhet hos den mera flexibla modellen. För denna gjordes även en ansats till feluppskattning, som senare kunde observeras överensstämma med praktiska beräkningar med metoden. Studien kan anses vara en god startpunkt och matematisk bas för utveckling av industriella tillämpningar av randidentifiering, speciellt mot hantering av olinjära och diskontinuerliga materialegenskaper och plötsliga förändringar orsakade av “nedfallande” väggmaterial. Med de behandlade metoderna förefaller det möjligt att uppnå en robust, snabb och tillräckligt noggrann metod av begränsad komplexitet för randidentifiering.
Resumo:
ABSTRACT Introduction Sudden death is a substantial public health problem, representing a major cause of mortality worldwide. Suitable initial care is essential for a good prognosis of these patients. Objectives To assess the knowledge of the 2010 guidelines for cardiopulmonary resuscitation (CPR) among medical students in their final year of undergraduate training. Methods This was a cross-sectional study with a sample of 217 medical students enrolled in the sixth year of accredited medical schools in Brazil. A structured questionnaire with 27 items was used to record the sociodemographic characteristics of the participants and to assess their knowledge base of the 2010 ILCOR guidelines for CPR. Results Only fifty (23.04%) out of 217 students achieved results considered as satisfactory in the written evaluation. The average score obtained was 56.74% correct answers. Seventeen percent of the students had never performed CPR maneuvers and 83.80% had never performed cardioversion or defibrillation. Conclusions The knowledge base of medical students regarding cardiopulmonary resuscitation is low. Considering these medical students are in their final year of medical school, this study reveals a worrisome scenario.
Resumo:
Neuromuscular blocking agents (NMBAs) are widely used in clinical anaesthesia and emergency medicine. Main objectives are to facilitate endotracheal intubation and to allow surgery by reducing muscle tone and eliminating sudden movements, which may otherwise lead to trauma and complications. The most commonly used NMBAs are non-depolarizing agents with a medium duration of action, such as rocuronium and cisatracurium. They bind to the acetylcholine receptors in the neuromuscular junction, thus inhibiting the depolarization of the postsynaptic (muscular) membrane, which is a prerequisite for muscle contraction to take place. Previously, it has been assumed that nitrous oxide (N2O), which is commonly used in combination with volatile or intravenous anaesthetics during general anaesthesia, has no effect on NMBAs. Several studies have since claimed that N2O in fact does increase the effect of NMBAs when using bolus administration of the relaxant. The effect of N2O on the infusion requirements of two NMBAs (rocuronium and cisatracurium) with completely different molecular structure and pharmacological properties was assessed. A closed-loop feedback controlled infusion of NMBA with duration of at least 90 minutes at a 90% level of neuromuscular block was used. All patients received total intravenous anaesthesia (TIVA) with propofol and remifentanil. In both studies the study group (n=35) received N2O/Oxygen and the control group (n=35) Air/Oxygen. There were no significant differences in the mean steady state infusion requirements of NMBA (rocuronium in Study I; cisatracurium in Study II) between the groups in either study. In Study III the duration of the unsafe period of recovery after reversal of rocuronium-induced neuromuscular block by using neostigmine or sugammadex as a reversal agent was analyzed. The unsafe period of recovery was defined as the time elapsed from the moment of no clinical (visual) fade in the train-of-four (TOF) sequence until an objectively measured TOF-ratio of 0.90 was achieved. The duration of these periods were 10.3 ± 5.5 and 0.3 ± 0.3 min after neostigmine and sugammadex, respectively (P < 0.001). Study IV investigated the possible effect of reversal of a rocuronium NMB by sugammadex on depth of anaesthesia as indicated by the bispectral index and entropy levels in thirty patients. Sugammadex did not affect the level of anaesthesia as determined by EEG-derived indices of anaesthetic depth such as the bispectral index and entropy.
Resumo:
The wear resistance of rotary plows operating in a clay loam soil was studied. The degree of damage caused to the soil and the amount of mass lost by the tools were determined in order to establish correlations between the physical properties of the soil and the wear mechanisms acting on the tribosystem. Field tests were carried out in 12 plots and a randomized experimental design with 4 levels, 3 replicas per level and 2 passes per plot was applied. The levels relate to the tillage implements employed: rotary tiller, rotary power harrow, small motorized rotary tiller and control (unaltered soil). The highest mass losses were measured in rotary tiller and rotary power harrow's tools, while the small motorized rotary tiller's tools showed generally lower levels of damage. It was determined that the effective contact time between tool and soil, the rotating speed and the sudden impact forces are the most significant factors affecting the wear resistance in field operations. Thirty days after tillage operation the soil samples were taken from each plot at a mean depth of 100 mm in order to determine bulk density, gravimetric moisture content and percentage of aggregates smaller than 5 mm. No significant differences among the values of these properties were found in the experiments. The wear mechanisms acting on the tools' surface are complex and include 2-body and 3-body abrasion as well as the presence of sudden impact forces.