947 resultados para spatial clustering algorithms
Resumo:
Face à estagnação da tecnologia uniprocessador registada na passada década, aos principais fabricantes de microprocessadores encontraram na tecnologia multi-core a resposta `as crescentes necessidades de processamento do mercado. Durante anos, os desenvolvedores de software viram as suas aplicações acompanhar os ganhos de performance conferidos por cada nova geração de processadores sequenciais, mas `a medida que a capacidade de processamento escala em função do número de processadores, a computação sequencial tem de ser decomposta em várias partes concorrentes que possam executar em paralelo, para que possam utilizar as unidades de processamento adicionais e completar mais rapidamente. A programação paralela implica um paradigma completamente distinto da programação sequencial. Ao contrário dos computadores sequenciais tipificados no modelo de Von Neumann, a heterogeneidade de arquiteturas paralelas requer modelos de programação paralela que abstraiam os programadores dos detalhes da arquitectura e simplifiquem o desenvolvimento de aplicações concorrentes. Os modelos de programação paralela mais populares incitam os programadores a identificar instruções concorrentes na sua lógica de programação, e a especificá-las sob a forma de tarefas que possam ser atribuídas a processadores distintos para executarem em simultâneo. Estas tarefas são tipicamente lançadas durante a execução, e atribuídas aos processadores pelo motor de execução subjacente. Como os requisitos de processamento costumam ser variáveis, e não são conhecidos a priori, o mapeamento de tarefas para processadores tem de ser determinado dinamicamente, em resposta a alterações imprevisíveis dos requisitos de execução. `A medida que o volume da computação cresce, torna-se cada vez menos viável garantir as suas restrições temporais em plataformas uniprocessador. Enquanto os sistemas de tempo real se começam a adaptar ao paradigma de computação paralela, há uma crescente aposta em integrar execuções de tempo real com aplicações interativas no mesmo hardware, num mundo em que a tecnologia se torna cada vez mais pequena, leve, ubíqua, e portável. Esta integração requer soluções de escalonamento que simultaneamente garantam os requisitos temporais das tarefas de tempo real e mantenham um nível aceitável de QoS para as restantes execuções. Para tal, torna-se imperativo que as aplicações de tempo real paralelizem, de forma a minimizar os seus tempos de resposta e maximizar a utilização dos recursos de processamento. Isto introduz uma nova dimensão ao problema do escalonamento, que tem de responder de forma correcta a novos requisitos de execução imprevisíveis e rapidamente conjeturar o mapeamento de tarefas que melhor beneficie os critérios de performance do sistema. A técnica de escalonamento baseado em servidores permite reservar uma fração da capacidade de processamento para a execução de tarefas de tempo real, e assegurar que os efeitos de latência na sua execução não afectam as reservas estipuladas para outras execuções. No caso de tarefas escalonadas pelo tempo de execução máximo, ou tarefas com tempos de execução variáveis, torna-se provável que a largura de banda estipulada não seja consumida por completo. Para melhorar a utilização do sistema, os algoritmos de partilha de largura de banda (capacity-sharing) doam a capacidade não utilizada para a execução de outras tarefas, mantendo as garantias de isolamento entre servidores. Com eficiência comprovada em termos de espaço, tempo, e comunicação, o mecanismo de work-stealing tem vindo a ganhar popularidade como metodologia para o escalonamento de tarefas com paralelismo dinâmico e irregular. O algoritmo p-CSWS combina escalonamento baseado em servidores com capacity-sharing e work-stealing para cobrir as necessidades de escalonamento dos sistemas abertos de tempo real. Enquanto o escalonamento em servidores permite partilhar os recursos de processamento sem interferências a nível dos atrasos, uma nova política de work-stealing que opera sobre o mecanismo de capacity-sharing aplica uma exploração de paralelismo que melhora os tempos de resposta das aplicações e melhora a utilização do sistema. Esta tese propõe uma implementação do algoritmo p-CSWS para o Linux. Em concordância com a estrutura modular do escalonador do Linux, ´e definida uma nova classe de escalonamento que visa avaliar a aplicabilidade da heurística p-CSWS em circunstâncias reais. Ultrapassados os obstáculos intrínsecos `a programação da kernel do Linux, os extensos testes experimentais provam que o p-CSWS ´e mais do que um conceito teórico atrativo, e que a exploração heurística de paralelismo proposta pelo algoritmo beneficia os tempos de resposta das aplicações de tempo real, bem como a performance e eficiência da plataforma multiprocessador.
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Informática
Resumo:
Dissertação para obtenção do Grau de Doutor em Engenharia Física
Resumo:
Dissertation submitted in partial fulfillment of the requirements for the Degree of Master of Science in Geospatial Technologies.
Resumo:
Dissertation submitted in partial fulfillment of the requirements for the Degree of Master of Science in Geospatial Technologies.
Resumo:
Dissertation submitted in partial fulfillment of the requirements for the Degree of Master of Science in Geospatial Technologies.
Resumo:
Dissertation submitted in partial fulfillment of the requirements for the Degree of Master of Science in Geospatial Technologies.
Resumo:
RESUMO - Enquadramento/Objectivos: As doenças oncológicas constituem a segunda causa de morte em Portugal, e têm um profundo impacto psicossocial, não só pela sua elevada incidência e mortalidade mas também pelos enormes custos envolvidos na sua prevenção, tratamento e reabilitação. De acordo com estudos anteriores, existem disparidades geográficas na incidência da doença oncológica. É por isso indispensável caracterizar e analisar as diferentes distribuições espaciais no tempo e no espaço, para controlar a doença e promover a saúde, contribuindo ao mesmo tempo para uma melhor compreensão da etiologia da doença. Este projecto compreende 3 objectivos principais que são: a caracterização de distribuição espacio-temporal do cancro do pulmão e do cancro do estômago, separadamente e em conjunto, na região sul de Portugal Continental (abrangida pelo ROR-Sul) no espaço temporal de 2000 a 2008, procurando identificar potenciais áreas de risco no desenvolvimento destes tumores. Metodologia: Numa primeira fase realizou-se um estudo descritivo das taxas de incidência dos tumores aqui retratados por idades, por sexo, por ano e por distritos. Posteriormente com o objectivo de identificar a presença de áreas de elevada incidência, procedeu-se à análise de clustering espacio-temporal das taxas de incidência ao nível dos concelhos na região do estudo, em 2000-2008. Resultados: Os resultados da análise descritiva revelaram que ambos os tumores são mais incidentes nos homens do que nas mulheres e que estes são igualmente mais incidentes em pessoas com mais de 75 anos. A análise de clustering espacio temporal permitiu verificar a existência um padrão geográfico heterogéneo da incidência de ambos os tumores, da qual resultaram 3 clusters para o cancro do estômago e 2 clusters para o cancro do pulmão (p <0,001). Os clusters do estômago pertencem maioritariamente à região do Alentejo e os clusters do cancro do pulmão à região da grande Lisboa. Conclusões: Os resultados da análise de clustering demonstraram um padrão heterogéneo da distribuição da incidência dos dois cancros na região e período temporal do estudo. As zonas identificadas de elevado risco são diferentes para ambos o tumores. A região que apresenta maior risco para o desenvolvimento do cancro do estômago é o Alentejo e do pulmão é o distrito de Lisboa.
Resumo:
A Work Project, presented as part of the requirements for the Award of a Masters Degree in Management from the NOVA – School of Business and Economics
Resumo:
Dissertação para obtenção do Grau de Doutor em Informática
Resumo:
Dissertation submitted in partial fulfillment of the requirements for the Degree of Master of Science in Geospatial Technologies
Resumo:
Dissertation submitted in partial fulfillment of the requirements for the Degree of Master of Science in Geospatial Technologies.
Resumo:
Dissertation submitted in partial fulfillment of the requirements for the Degree of Master of Science in Geospatial Technologies
Resumo:
Dissertação para obtenção do Grau de Mestre em Logica Computicional
Resumo:
Dissertação para obtenção do Grau de Doutor em Engenharia do Ambiente