886 resultados para scientific information, news website, news, Science News


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Multiple awards for Spatial/Surveying lecturer, raising entry quality and commencing numbers at QUT, Gardens Point rapt in promise of things to come, STEM building progress.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The rapid growth of online social media networks like Facebook and Twitter is strongly influencing news media to engage with such networks for generating newsworthy content, accessing mass audiences for news consumption and using the platforms for news distribution. While both media’s complement each other as sources of news and information, they also compete against each other as news repositories and are observed vying for the same audiences. We call this phenomenon the competing-complementarity (C-C) engagement. To investigate the C-C relationship we use Fidler’s “mediamorphosis” concept to explain the metamorphosis of news media in the online domain. We make two contributions to Fidler’s concept by offering an additional principle “mass user migration” to address the characteristics of metamorphosis and an additional driver “transcended social engagement” to show the force that propels it. Besides, we also propose four accelerators that influence metamorphosis. Theoretical analysis of news media’s metamorphosis indicates its affinity to online social media. We apply niche and gratification theories to explain complementarity, and displacement effects on media consumption habits to trace competition between both media’s.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

News blog hot topics are important for the information recommendation service and marketing. However, information overload and personalized management make the information arrangement more difficult. Moreover, what influences the formation and development of blog hot topics is seldom paid attention to. In order to correctly detect news blog hot topics, the paper first analyzes the development of topics in a new perspective based on W2T (Wisdom Web of Things) methodology. Namely, the characteristics of blog users, context of topic propagation and information granularity are unified to analyze the related problems. Some factors such as the user behavior pattern, network opinion and opinion leader are subsequently identified to be important for the development of topics. Then the topic model based on the view of event reports is constructed. At last, hot topics are identified by the duration, topic novelty, degree of topic growth and degree of user attention. The experimental results show that the proposed method is feasible and effective.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Although topic detection and tracking techniques have made great progress, most of the researchers seldom pay more attention to the following two aspects. First, the construction of a topic model does not take the characteristics of different topics into consideration. Second, the factors that determine the formation and development of hot topics are not further analyzed. In order to correctly extract news blog hot topics, the paper views the above problems in a new perspective based on the W2T (Wisdom Web of Things) methodology, in which the characteristics of blog users, context of topic propagation and information granularity are investigated in a unified way. The motivations and features of blog users are first analyzed to understand the characteristics of news blog topics. Then the context of topic propagation is decomposed into the blog community, topic network and opinion network, respectively. Some important factors such as the user behavior pattern, opinion leader and network opinion are identified to track the development trends of news blog topics. Moreover, a blog hot topic detection algorithm is proposed, in which news blog hot topics are identified by measuring the duration, topic novelty, attention degree of users and topic growth. Experimental results show that the proposed method is feasible and effective. These results are also useful for further studying the formation mechanism of opinion leaders in blogspace.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Speaker attribution is the task of annotating a spoken audio archive based on speaker identities. This can be achieved using speaker diarization and speaker linking. In our previous work, we proposed an efficient attribution system, using complete-linkage clustering, for conducting attribution of large sets of two-speaker telephone data. In this paper, we build on our proposed approach to achieve a robust system, applicable to multiple recording domains. To do this, we first extend the diarization module of our system to accommodate multi-speaker (>2) recordings. We achieve this through using a robust cross-likelihood ratio (CLR) threshold stopping criterion for clustering, as opposed to the original stopping criterion of two speakers used for telephone data. We evaluate this baseline diarization module across a dataset of Australian broadcast news recordings, showing a significant lack of diarization accuracy without previous knowledge of the true number of speakers within a recording. We thus propose applying an additional pass of complete-linkage clustering to the diarization module, demonstrating an absolute improvement of 20% in diarization error rate (DER). We then evaluate our proposed multi-domain attribution system across the broadcast news data, demonstrating achievable attribution error rates (AER) as low as 17%.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This thesis presents a sequential pattern based model (PMM) to detect news topics from a popular microblogging platform, Twitter. PMM captures key topics and measures their importance using pattern properties and Twitter characteristics. This study shows that PMM outperforms traditional term-based models, and can potentially be implemented as a decision support system. The research contributes to news detection and addresses the challenging issue of extracting information from short and noisy text.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The proliferation of news reports published in online websites and news information sharing among social media users necessitates effective techniques for analysing the image, text and video data related to news topics. This paper presents the first study to classify affective facial images on emerging news topics. The proposed system dynamically monitors and selects the current hot (of great interest) news topics with strong affective interestingness using textual keywords in news articles and social media discussions. Images from the selected hot topics are extracted and classified into three categorized emotions, positive, neutral and negative, based on facial expressions of subjects in the images. Performance evaluations on two facial image datasets collected from real-world resources demonstrate the applicability and effectiveness of the proposed system in affective classification of facial images in news reports. Facial expression shows high consistency with the affective textual content in news reports for positive emotion, while only low correlation has been observed for neutral and negative. The system can be directly used for applications, such as assisting editors in choosing photos with a proper affective semantic for a certain topic during news report preparation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

For the first decade of its existence, the concept of citizen journalism has described an approach which was seen as a broadening of the participant base in journalistic processes, but still involved only a comparatively small subset of overall society – for the most part, citizen journalists were news enthusiasts and “political junkies” (Coleman, 2006) who, as some exasperated professional journalists put it, “wouldn’t get a job at a real newspaper” (The Australian, 2007), but nonetheless followed many of the same journalistic principles. The investment – if not of money, then at least of time and effort – involved in setting up a blog or participating in a citizen journalism Website remained substantial enough to prevent the majority of Internet users from engaging in citizen journalist activities to any significant extent; what emerged in the form of news blogs and citizen journalism sites was a new online elite which for some time challenged the hegemony of the existing journalistic elite, but gradually also merged with it. The mass adoption of next-generation social media platforms such as Facebook and Twitter, however, has led to the emergence of a new wave of quasi-journalistic user activities which now much more closely resemble the “random acts of journalism” which JD Lasica envisaged in 2003. Social media are not exclusively or even predominantly used for citizen journalism; instead, citizen journalism is now simply a by-product of user communities engaging in exchanges about the topics which interest them, or tracking emerging stories and events as they happen. Such platforms – and especially Twitter with its system of ad hoc hashtags that enable the rapid exchange of information about issues of interest – provide spaces for users to come together to “work the story” through a process of collaborative gatewatching (Bruns, 2005), content curation, and information evaluation which takes place in real time and brings together everyday users, domain experts, journalists, and potentially even the subjects of the story themselves. Compared to the spaces of news blogs and citizen journalism sites, but also of conventional online news Websites, which are controlled by their respective operators and inherently position user engagement as a secondary activity to content publication, these social media spaces are centred around user interaction, providing a third-party space in which everyday as well as institutional users, laypeople as well as experts converge without being able to control the exchange. Drawing on a number of recent examples, this article will argue that this results in a new dynamic of interaction and enables the emergence of a more broadly-based, decentralised, second wave of citizen engagement in journalistic processes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Clustering identities in a video is a useful task to aid in video search, annotation and retrieval, and cast identification. However, reliably clustering faces across multiple videos is challenging task due to variations in the appearance of the faces, as videos are captured in an uncontrolled environment. A person's appearance may vary due to session variations including: lighting and background changes, occlusions, changes in expression and make up. In this paper we propose the novel Local Total Variability Modelling (Local TVM) approach to cluster faces across a news video corpus; and incorporate this into a novel two stage video clustering system. We first cluster faces within a single video using colour, spatial and temporal cues; after which we use face track modelling and hierarchical agglomerative clustering to cluster faces across the entire corpus. We compare different face recognition approaches within this framework. Experiments on a news video database show that the Local TVM technique is able effectively model the session variation observed in the data, resulting in improved clustering performance, with much greater computational efficiency than other methods.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Comments constitute an important part of Web 2.0. In this paper, we consider comments on news articles. To simplify the task of relating the comment content to the article content the comments are about, we propose the idea of showing comments alongside article segments and explore automatic mapping of comments to article segments. This task is challenging because of the vocabulary mismatch between the articles and the comments. We present supervised and unsupervised techniques for aligning comments to segments the of article the comments are about. More specifically, we provide a novel formulation of supervised alignment problem using the framework of structured classification. Our experimental results show that structured classification model performs better than unsupervised matching and binary classification model.