945 resultados para scale free network


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We derive a closed form expression for the sum of all the infrared divergent contributions to the free energy of a gas of gravitons. An important ingredient of our calculation is the use of a gauge fixing procedure such that the graviton propagator becomes both traceless and transverse. This has been shown to be possible, in a previous work, using a general gauge fixing procedure, in the context of the lowest order expansion of the Einstein-Hilbert action, describing noninteracting spin-two fields. In order to encompass the problems involving thermal loops, such as the resummation of the free energy, in the present work, we have extended this procedure to the situations when the interactions are taken into account.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We analyze the irreversibility and the entropy production in nonequilibrium interacting particle systems described by a Fokker-Planck equation by the use of a suitable master equation representation. The irreversible character is provided either by nonconservative forces or by the contact with heat baths at distinct temperatures. The expression for the entropy production is deduced from a general definition, which is related to the probability of a trajectory in phase space and its time reversal, that makes no reference a priori to the dissipated power. Our formalism is applied to calculate the heat conductance in a simple system consisting of two Brownian particles each one in contact to a heat reservoir. We show also the connection between the definition of entropy production rate and the Jarzynski equality.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the last decade the Sznajd model has been successfully employed in modeling some properties and scale features of both proportional and majority elections. We propose a version of the Sznajd model with a generalized bounded confidence rule-a rule that limits the convincing capability of agents and that is essential to allow coexistence of opinions in the stationary state. With an appropriate choice of parameters it can be reduced to previous models. We solved this model both in a mean-field approach (for an arbitrary number of opinions) and numerically in a Barabaacutesi-Albert network (for three and four opinions), studying the transient and the possible stationary states. We built the phase portrait for the special cases of three and four opinions, defining the attractors and their basins of attraction. Through this analysis, we were able to understand and explain discrepancies between mean-field and simulation results obtained in previous works for the usual Sznajd model with bounded confidence and three opinions. Both the dynamical system approach and our generalized bounded confidence rule are quite general and we think it can be useful to the understanding of other similar models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we study the one-and two-loop contribution to the free energy in QED with Lorentz symmetry breaking introduced via constant CPT-even Lorentz-breaking parameters at the high temperature limit. We find the impact of the Lorentz-violating term for the free energy and carry out a numerical estimation for the Lorentz-breaking parameter.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The study of displaced vertices containing two b-jets may provide a double discovery at the Large Hadron Collider (LHC): we show how it may not only reveal evidence for supersymmetry, but also provide a way to uncover the Higgs boson necessary in the formulation of the electroweak theory in a large region of the parameter space. We quantify this explicitly using the simplest minimal supergravity model with bilinear breaking of R-parity, which accounts for the observed pattern of neutrino masses and mixings seen in neutrino oscillation experiments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work clarifies the relation between network circuit (topology) and behaviour (information transmission and synchronization) in active networks, e.g. neural networks. As an application, we show how one can find network topologies that are able to transmit a large amount of information, possess a large number of communication channels, and are robust under large variations of the network coupling configuration. This theoretical approach is general and does not depend on the particular dynamic of the elements forming the network, since the network topology can be determined by finding a Laplacian matrix (the matrix that describes the connections and the coupling strengths among the elements) whose eigenvalues satisfy some special conditions. To illustrate our ideas and theoretical approaches, we use neural networks of electrically connected chaotic Hindmarsh-Rose neurons.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose a natural way to create quantum-confined regions in graphene in a system that allows large-scale device integration. We show, using first-principles calculations, that a single graphene layer on a trenched region of [000 (1) over bar] SiC mimics (i) the energy bands around the Fermi level and (ii) the magnetic properties of free-standing graphene nanoribbons. Depending on the trench direction, either zigzag or armchair nanoribbons are mimicked. This behavior occurs because a single graphene layer over a SiC surface loses the graphenelike properties, which are restored solely over the trenches, providing in this way a confined strip region.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using ab initio methods, we propose a simple and effective way to substitutionally dope graphene sheets with boron. The method consists of selectively exposing each side of the graphene sheet to different elements. We first expose one side of the membrane to boron while the other side is exposed to nitrogen. Proceeding this way, the B atoms will be spontaneously incorporated into the graphene membrane without any activation barrier. In a second step, the system should be exposed to a H-rich environment, which will remove the CN radical from the layer and form HCN, leading to a perfect substitutional doping.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We numerically study the dynamics of a discrete spring-block model introduced by Olami, Feder, and Christensen (OFC) to mimic earthquakes and investigate to what extent this simple model is able to reproduce the observed spatiotemporal clustering of seismicity. Following a recently proposed method to characterize such clustering by networks of recurrent events [J. Davidsen, P. Grassberger, and M. Paczuski, Geophys. Res. Lett. 33, L11304 (2006)], we find that for synthetic catalogs generated by the OFC model these networks have many nontrivial statistical properties. This includes characteristic degree distributions, very similar to what has been observed for real seismicity. There are, however, also significant differences between the OFC model and earthquake catalogs, indicating that this simple model is insufficient to account for certain aspects of the spatiotemporal clustering of seismicity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we detail some results advanced in a recent letter [Prado et al., Phys. Rev. Lett. 102, 073008 (2009).] showing how to engineer reservoirs for two-level systems at absolute zero by means of a time-dependent master equation leading to a nonstationary superposition equilibrium state. We also present a general recipe showing how to build nonadiabatic coherent evolutions of a fermionic system interacting with a bosonic mode and investigate the influence of thermal reservoirs at finite temperature on the fidelity of the protected superposition state. Our analytical results are supported by numerical analysis of the full Hamiltonian model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Large-scale cortical networks exhibit characteristic topological properties that shape communication between brain regions and global cortical dynamics. Analysis of complex networks allows the description of connectedness, distance, clustering, and centrality that reveal different aspects of how the network's nodes communicate. Here, we focus on a novel analysis of complex walks in a series of mammalian cortical networks that model potential dynamics of information flow between individual brain regions. We introduce two new measures called absorption and driftness. Absorption is the average length of random walks between any two nodes, and takes into account all paths that may diffuse activity throughout the network. Driftness is the ratio between absorption and the corresponding shortest path length. For a given node of the network, we also define four related measurements, namely in-and out-absorption as well as in-and out-driftness, as the averages of the corresponding measures from all nodes to that node, and from that node to all nodes, respectively. We find that the cat thalamo-cortical system incorporates features of two classic network topologies, Erdos-Renyi graphs with respect to in-absorption and in-driftness, and configuration models with respect to out-absorption and out-driftness. Moreover, taken together these four measures separate the network nodes based on broad functional roles (visual, auditory, somatomotor, and frontolimbic).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Several growth procedures for doping InAs/GaAs quantum dots (QDs) with manganese (Mn) have been investigated with cross-sectional scanning tunneling microscopy. It is found that expulsion of Mn out of the QDs and subsequent segregation makes it difficult to incorporate Mn in the QDs even at low growth temperatures of T=320 degrees C and high Mn fluxes. Mn atoms in and around QDs have been observed with strain and potential confinement changing the appearance of the Mn features.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we provide a recipe for state protection in a network of oscillators under collective damping and diffusion. Our strategy is to manipulate the network topology, i.e., the way the oscillators are coupled together, the strength of their couplings, and their natural frequencies, in order to create a relaxation-diffusion-free channel. This protected channel defines a decoherence-free subspace (DFS) for nonzero-temperature reservoirs. Our development also furnishes an alternative approach to build up DFSs that offers two advantages over the conventional method: it enables the derivation of all the network-protected states at once, and also reveals, through the network normal modes, the mechanism behind the emergence of these protected domains.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

has been widely believed that, except in very extreme situations, the influence of gravity on quantum fields should amount to just small, subdominant contributions. This view seemed to be endorsed by the seminal results obtained over the last decades in the context of renormalization of quantum fields in curved spacetimes. Here, however, we argue that this belief is false by showing that there exist well-behaved spacetime evolutions where the vacuum energy density of free quantum fields is forced, by the very same background spacetime, to become dominant over any classical energy-density component. By estimating the time scale for the vacuum energy density to become dominant, and therefore for back-reaction on the background spacetime to become important, we argue that this (infrared) vacuum dominance may bear unexpected astrophysical and cosmological implications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes a new and simple method to determine the molecular weight of proteins in dilute solution, with an error smaller than similar to 10%, by using the experimental data of a single small-angle X-ray scattering (SAXS) curve measured on a relative scale. This procedure does not require the measurement of SAXS intensity on an absolute scale and does not involve a comparison with another SAXS curve determined from a known standard protein. The proposed procedure can be applied to monodisperse systems of proteins in dilute solution, either in monomeric or multimeric state, and it has been successfully tested on SAXS data experimentally determined for proteins with known molecular weights. It is shown here that the molecular weights determined by this procedure deviate from the known values by less than 10% in each case and the average error for the test set of 21 proteins was 5.3%. Importantly, this method allows for an unambiguous determination of the multimeric state of proteins with known molecular weights.