790 resultados para research supervision in engineering and IT
Resumo:
Clinical and experimental evidence suggest that estrogens have a major impact on cognition, presenting neurotrophic and neuroprotective actions in regions involved in such function. In opposite, some studies indicate that certain hormone therapy regimens may provoke detrimental effects over female cognitive and neurological function. Therefore, we decided to investigate how estrogen treatment would influence cognition and depression in different ages. For that matter, this study assessed the effects of chronic 17 beta-estradiol treatment over cognition and depressive-like behaviors of young (3 months old), adult (7 months old) and middle-aged (12 months old) reproductive female Wistar rats. These functions were also correlated with alterations in the serotonergic system, as well as hippocampal BDNF. 17 beta-Estradiol treatment did not influence animals' locomotor activity and exploratory behavior, but it was able to improve the performance of adult and middle-aged rats in the Morris water maze, the latter being more responsive to the treatment. Young and adult rats displayed decreased immobility time in the forced swimming test, suggesting an effect of 17 beta-estradiol also over such depressive-like behavior. This same test revealed increased swimming behavior, triggered by serotonergic pathway, in adult rats. Neurochemical evaluations indicated that 17 beta-estradiol treatment was able to increase serotonin turnover rate in the hippocampus of adult rats. Interestingly, estrogen treatment increased BDNF levels from animals of all ages. These findings support the notion that the beneficial effects of 17 beta-estradiol over spatial reference memory and depressive-like behavior are evident only when hormone therapy occurs at early ages and early stages of hormonal decline. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
The living conditions of the inhabitants of Iauarete, an indigenous area in the municipality of Sao Gabriel da Cachoeira, State of Amazonas (Northern Brazil), have been negatively affected by population density, poor sanitation and maintenance of sanitation practices that are incompatible with that reality. To improve the population's quality of life, sanitation systems that are adequate to the local socio-cultural characteristics should be implemented, as well as educational processes with emphasis on social mobilization and community empowerment. The aim of this paper is to report and discuss a training course on health and sanitation using action research, directed to the mobilization of the Iauarete indigenous people, with the objective of assisting other studies of this nature. In the meetings, issues related to environmental health were discussed, a Community Newspaper was constructed, the course participants made interviews and drew up claims documents. This experience has enhanced the participants' understanding of local problems and of the importance of social mobilization for the dialogue with governmental institutions that are responsible for providing sanitation services and for seeking better living conditions. The researchers and teachers of the training course benefitted from the construction of collective knowledge resulting from interaction with subjects of the investigated situation and from the recognition and redefinition of their representations, fulfilling the fundamental premise of action research.
Resumo:
Objectives: Determination of the SET protein levels in head and neck squamous cell carcinoma (HNSCC) tissue samples and the SET role in cell survival and response to oxidative stress in HNSCC cell lineages. Materials and Methods: SET protein was analyzed in 372 HNSCC tissue samples by immunohistochemistry using tissue microarray and HNSCC cell lineages. Oxidative stress was induced with the pro-oxidant tert-butylhydroperoxide (50 and 250 mu M) in the HNSCC HN13 cell lineage either with (siSET) or without (siNC) SET knockdown. Cell viability was evaluated by trypan blue exclusion and annexin V/propidium iodide assays. It was assessed caspase-3 and -9, PARP-1, DNA fragmentation, NM23-H1, SET, Akt and phosphorylated Akt (p-Akt) status. Acidic vesicular organelles (AVOs) were assessed by the acridine orange assay. Glutathione levels and transcripts of antioxidant genes were assayed by fluorometry and real time PCR, respectively. Results: SET levels were up-regulated in 97% tumor tissue samples and in HNSCC cell lineages. SiSET in HN13 cells (i) promoted cell death but did not induced caspases, PARP-1 cleavage or DNA fragmentation, and (ii) decreased resistance to death induced by oxidative stress, indicating SET involvement through caspase-independent mechanism. The red fluorescence induced by siSET in HN13 cells in the acridine orange assay suggests SET-dependent prevention of AVOs acidification. NM23-H1 protein was restricted to the cytoplasm of siSET/siNC HN13 cells under oxidative stress, in association with decrease of cleaved SET levels. In the presence of oxidative stress, siNC HN13 cells showed lower GSH antioxidant defense (GSH/GSSG ratio) but higher expression of the antioxidant genes PRDX6, SOD2 and TXN compared to siSET HN13 cells. Still under oxidative stress, p-Akt levels were increased in siNC HN13 cells but not in siSET HN13, indicating its involvement in HN13 cell survival. Similar results for the main SET effects were observed in HN12 and CAL 27 cell lineages, except that HN13 cells were more resistant to death. Conclusion: SET is potential (i) marker for HNSCC associated with cancer cell resistance and (ii) new target in cancer therapy. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Nowadays, the attainment of microsystems that integrate most of the stages involved in an analytical process has raised an enormous interest in several research fields. This approach provides experimental set-ups of increased robustness and reliability, which simplify their application to in-line and continuous biomedical and environmental monitoring. In this work, a novel, compact and autonomous microanalyzer aimed at multiwavelength colorimetric determinations is presented. It integrates the microfluidics (a three-dimensional mixer and a 25 mm length "Z-shape" optical flow-cell), a highly versatile multiwavelength optical detection system and the associated electronics for signal processing and drive, all in the same device. The flexibility provided by its design allows the microanalyzer to be operated either in single fixed mode to provide a dedicated photometer or in multiple wavelength mode to obtain discrete pseudospectra. To increase its reliability, automate its operation and allow it to work under unattended conditions, a multicommutation sub-system was developed and integrated with the experimental set-up. The device was initially evaluated in the absence of chemical reactions using four acidochromic dyes and later applied to determine some key environmental parameters such as phenol index, chromium(VI) and nitrite ions. Results were comparable with those obtained with commercial instrumentation and allowed to demonstrate the versatility of the proposed microanalyzer as an autonomous and portable device able to be applied to other analytical methodologies based on colorimetric determinations.
Resumo:
The purpose of present review is to describe the effect of leucine supplementation on skeletal muscle proteolysis suppression in both in vivo and in vitro studies. Most studies, using in vitro methodology, incubated skeletal muscles with leucine with different doses and the results suggests that there is a dose-dependent effect. The same responses can be observed in in vivo studies. Importantly, the leucine effects on skeletal muscle protein synthesis are not always connected to the inhibition of skeletal muscle proteolysis. As a matter of fact, high doses of leucine incubation can promote suppression of muscle proteolysis without additional effects on protein synthesis, and low leucine doses improve skeletal muscle protein ynthesis but have no effect on skeletal muscle proteolysis. These research findings may have an important clinical relevancy, because muscle loss in atrophic states would be reversed by specific leucine supplementation doses. Additionally, it has been clearly demonstrated that leucine administration suppresses skeletal muscle proteolysis in various catabolic states. Thus, if protein metabolism changes during different atrophic conditions, it is not surprising that the leucine dose-effect relationship must also change, according to atrophy or pathological state and catabolism magnitude. In conclusion, leucine has a potential role on attenuate skeletal muscle proteolysis. Future studies will help to sharpen the leucine efficacy on skeletal muscle protein degradation during several atrophic states.
Resumo:
Abstract Background Hypertension can be generated by a great number of mechanisms including elevated uric acid (UA) that contribute to the anion superoxide production. However, physical exercise is recommended to prevent and/or control high blood pressure (BP). The purpose of this study was to investigate the relationship between BP and UA and whether this relationship may be mediated by the functional fitness index. Methods All participants (n = 123) performed the following tests: indirect maximal oxygen uptake (VO2max), AAHPERD Functional Fitness Battery Test to determine the general fitness functional index (GFFI), systolic and diastolic blood pressure (SBP and DBP), body mass index (BMI) and blood sample collection to evaluate the total-cholesterol (CHOL), LDL-cholesterol (LDL-c), HDL-cholesterol (HDL-c), triglycerides (TG), uric acid (UA), nitrite (NO2) and thiobarbituric acid reactive substances (T-BARS). After the physical, hemodynamic and metabolic evaluations, all participants were allocated into three groups according to their GFFI: G1 (regular), G2 (good) and G3 (very good). Results Baseline blood pressure was higher in G1 when compared to G3 (+12% and +11%, for SBP and DBP, respectively, p<0.05) and the subjects who had higher values of BP also presented higher values of UA. Although UA was not different among GFFI groups, it presented a significant correlation with GFFI and VO2max. Also, nitrite concentration was elevated in G3 compared to G1 (140±29 μM vs 111± 29 μM, for G3 and G1, respectively, p<0.0001). As far as the lipid profile, participants in G3 presented better values of CHOL and TG when compared to those in G1. Conclusions Taking together the findings that subjects with higher BP had elevated values of UA and lower values of nitrite, it can be suggested that the relationship between blood pressure and the oxidative stress produced by acid uric may be mediated by training status.
Resumo:
Background: Stereology is an established method to extrapolate three-dimensional quantities from two-dimensional images. It was applied to placentation in the mouse, but not yet for other rodents. Herein, we provide the first study on quantitative placental development in a sigmodontine rodent species with relatively similar gestational time. Placental structure was also compared to the mouse, in order to evaluate similarities and differences in developmental patterns at the end of gestation. Methods: Fetal and placental tissues of Necromys lasiurus were collected and weighed at 3 different stages of gestation (early, mid and late gestation) for placental stereology. The total and relative volumes of placenta and of its main layers were investigated. Volume fractions of labyrinth components were quantified by the One Stop method in 31 placentae collected from different individuals, using the Mercator® software. Data generated at the end of gestation from N. lasiurus placentae were compared to those of Mus musculus domesticus obtained at the same stage. Results: A significant increase in the total absolute volumes of the placenta and its main layers occurred from early to mid-gestation, followed by a reduction near term, with the labyrinth layer becoming the most prominent area. Moreover, at the end of gestation, the total volume of the mouse placenta was significantly increased compared to that of N. lasiurus although the proportions of the labyrinth layer and junctional zones were similar. Analysis of the volume fractions of the components in the labyrinth indicated a significant increase in fetal vessels and sinusoidal giant cells, a decrease in labyrinthine trophoblast whereas the proportion of maternal blood space remained stable in the course of gestation. On the other hand, in the mouse, volume fractions of fetal vessels and sinusoidal giant cells decreased whereas the volume fraction of labyrinthine trophoblast increased compared to N. lasiurus placenta. Conclusions: Placental development differed between N. lasiurus and M. musculus domesticus. In particular, the low placental efficiency in N. lasiurus seemed to induce morphological optimization of fetomaternal exchanges. In conclusion, despite similar structural aspects of placentation in these species, the quantitative dynamics showed important differences.
Resumo:
The prehistoric cemetery of Barshalder is located along the main road on the boundary between Grötlingbo and Fide parishes, near the southern end of the island of Gotland in the Baltic Sea. The cemetery was used from c. AD 1-1100. The level of publication in Swedish archaeology of the first millennium AD is low compared to, for instance, the British and German examples. Gotland’s rich Iron Age cemeteries have long been intensively excavated, but few have received monographic treatment. This publication is intended to begin filling this gap and to raise the empirical level of the field. It also aims to make explicit and test the often somewhat intuitively conceived results of much previous research. The analyses deal mainly with the Migration (AD 375–540), Vendel (AD 520–790) and Late Viking (AD 1000–1150) Periods. The following lines of inquiry have been prioritised. 1. Landscape history, i.e. placing the cemetery in a landscape-historical context. (Vol. 1, section 2.2.6) 2. Migration Period typochronology, i.e. the study of change in the grave goods. (Vol. 2, chapter 2) 3. Social roles: gender, age and status. (Vol. 2, chapter 3) 4. Religious identity in the 11th century, i.e. the study of religious indicators in mortuary customs and grave goods, with particular emphasis on the relationship between Scandinavian paganism and Christianity.. (Vol. 2, chapter 4) Barshalder is found to have functioned as a central cemetery for the surrounding area, located on peripheral land far away from contemporary settlement, yet placed on a main road along the coast for maximum visibility and possibly near a harbour. Computer supported correspondence analysis and seriation are used to study the gender attributes among the grave goods and the chronology of the burials. New methodology is developed to distinguish gender-neutral attributes from transgressed gender attributes. Sub-gender grouping due to age and status is explored. An independent modern chronology system with rigorous type definitions is established for the Migration Period of Gotland. Recently published chronology systems for the Vendel and Viking Periods are critically reviewed, tested and modified to produce more solid models. Social stratification is studied through burial wealth with a quantitative method, and the results are tested through juxtaposition with several other data types. The Late Viking Period graves of the late 10th and 11th centuries are studied in relation to the contemporary Christian graves at the churchyards. They are found to be symbolically soft-spoken and unobtrusive, with all pagan attributes kept apart from the body in a space between the feet of the deceased and the end of the over-long inhumation trench. A small number of pagan reactionary graves with more forceful symbolism are however also identified. The distribution of different 11th century cemetery types across the island is used to interpret the period’s confessional geography, the scale of social organisation and the degree of allegiance to western and eastern Christianity. 11th century society on Gotland is found to have been characterised by religious tolerance, by an absence of central organisation and by slow piecemeal Christianisation.
Resumo:
[EN] Mediterranean Water eddies (meddies) are thought to play an important climatic role. Nevertheless, their dynamics are not sufficiently known because of difficulties encountered in their observation. Though propagating below the main thermocline, a number of pieces of evidence of sea surface manifestation of meddies are collected. The present work is based on joint in situ and altimetry data analyses to prove that the meddies can be followed with remote sensing data for long periods of time. The in situ observations are based on data from an oceanographic cruise, which crossed three meddies, and reanalysis of historical data sets, including RAFOS floats paths. Suggested methodology permitted us to obtain uninterrupted tracks for several meddies for a period from several months to more than 2 years. It was found that the dynamically calm region to the north of the Azores current presents favorable conditions for meddy tracking. The meddy surface signal may become shattered and difficult to follow during interaction with a strong dynamic structures (the Azores current/surface vortexes) or peaking topography. Theoretical considerations support the observations and lead to the conclusion that the dynamic signature of meddies at the sea surface is an intrinsic property of meddy dynamics
Resumo:
This thesis is focused on the metabolomic study of human cancer tissues by ex vivo High Resolution-Magic Angle Spinning (HR-MAS) nuclear magnetic resonance (NMR) spectroscopy. This new technique allows for the acquisition of spectra directly on intact tissues (biopsy or surgery), and it has become very important for integrated metabonomics studies. The objective is to identify metabolites that can be used as markers for the discrimination of the different types of cancer, for the grading, and for the assessment of the evolution of the tumour. Furthermore, an attempt to recognize metabolites, that although involved in the metabolism of tumoral tissues in low concentration, can be important modulators of neoplastic proliferation, was performed. In addition, NMR data was integrated with statistical techniques in order to obtain semi-quantitative information about the metabolite markers. In the case of gliomas, the NMR study was correlated with gene expression of neoplastic tissues. Chapter 1 begins with a general description of a new “omics” study, the metabolomics. The study of metabolism can contribute significantly to biomedical research and, ultimately, to clinical medical practice. This rapidly developing discipline involves the study of the metabolome: the total repertoire of small molecules present in cells, tissues, organs, and biological fluids. Metabolomic approaches are becoming increasingly popular in disease diagnosis and will play an important role on improving our understanding of cancer mechanism. Chapter 2 addresses in more detail the basis of NMR Spectroscopy, presenting the new HR-MAS NMR tool, that is gaining importance in the examination of tumour tissues, and in the assessment of tumour grade. Some advanced chemometric methods were used in an attempt to enhance the interpretation and quantitative information of the HR-MAS NMR data are and presented in chapter 3. Chemometric methods seem to have a high potential in the study of human diseases, as it permits the extraction of new and relevant information from spectroscopic data, allowing a better interpretation of the results. Chapter 4 reports results obtained from HR-MAS NMR analyses performed on different brain tumours: medulloblastoma, meningioms and gliomas. The medulloblastoma study is a case report of primitive neuroectodermal tumor (PNET) localised in the cerebellar region by Magnetic Resonance Imaging (MRI) in a 3-year-old child. In vivo single voxel 1H MRS shows high specificity in detecting the main metabolic alterations in the primitive cerebellar lesion; which consist of very high amounts of the choline-containing compounds and of very low levels of creatine derivatives and N-acetylaspartate. Ex vivo HR-MAS NMR, performed at 9.4 Tesla on the neoplastic specimen collected during surgery, allows the unambiguous identification of several metabolites giving a more in-depth evaluation of the metabolic pattern of the lesion. The ex vivo HR-MAS NMR spectra show higher detail than that obtained in vivo. In addition, the spectroscopic data appear to correlate with some morphological features of the medulloblastoma. The present study shows that ex vivo HR-MAS 1H NMR is able to strongly improve the clinical possibility of in vivo MRS and can be used in conjunction with in vivo spectroscopy for clinical purposes. Three histological subtypes of meningiomas (meningothelial, fibrous and oncocytic) were analysed both by in vivo and ex vivo MRS experiments. The ex vivo HR-MAS investigations are very helpful for the assignment of the in vivo resonances of human meningiomas and for the validation of the quantification procedure of in vivo MR spectra. By using one- and two dimensional experiments, several metabolites in different histological subtypes of meningiomas, were identified. The spectroscopic data confirmed the presence of the typical metabolites of these benign neoplasms and, at the same time, that meningomas with different morphological characteristics have different metabolic profiles, particularly regarding macromolecules and lipids. The profile of total choline metabolites (tCho) and the expression of the Kennedy pathway genes in biopsies of human gliomas were also investigated using HR-MAS NMR, and microfluidic genomic cards. 1H HR-MAS spectra, allowed the resolution and relative quantification by LCModel of the resonances from choline (Cho), phosphorylcholine (PC) and glycerolphorylcholine (GPC), the three main components of the combined tCho peak observed in gliomas by in vivo 1H MRS spectroscopy. All glioma biopsies depicted an increase in tCho as calculated from the addition of Cho, PC and GPC HR-MAS resonances. However, the increase was constantly derived from augmented GPC in low grade NMR gliomas or increased PC content in the high grade gliomas, respectively. This circumstance allowed the unambiguous discrimination of high and low grade gliomas by 1H HR-MAS, which could not be achieved by calculating the tCho/Cr ratio commonly used by in vivo 1H MR spectroscopy. The expression of the genes involved in choline metabolism was investigated in the same biopsies. The present findings offer a convenient procedure to classify accurately glioma grade using 1H HR-MAS, providing in addition the genetic background for the alterations of choline metabolism observed in high and low gliomas grade. Chapter 5 reports the study on human gastrointestinal tract (stomach and colon) neoplasms. The human healthy gastric mucosa, and the characteristics of the biochemical profile of human gastric adenocarcinoma in comparison with that of healthy gastric mucosa were analyzed using ex vivo HR-MAS NMR. Healthy human mucosa is mainly characterized by the presence of small metabolites (more than 50 identified) and macromolecules. The adenocarcinoma spectra were dominated by the presence of signals due to triglycerides, that are usually very low in healthy gastric mucosa. The use of spin-echo experiments enable us to detect some metabolites in the unhealthy tissues and to determine their variation with respect to the healthy ones. Then, the ex vivo HR-MAS NMR analysis was applied to human gastric tissue, to obtain information on the molecular steps involved in the gastric carcinogenesis. A microscopic investigation was also carried out in order to identify and locate the lipids in the cellular and extra-cellular environments. Correlation of the morphological changes detected by transmission (TEM) and scanning (SEM) electron microscopy, with the metabolic profile of gastric mucosa in healthy, gastric atrophy autoimmune diseases (AAG), Helicobacter pylori-related gastritis and adenocarcinoma subjects, were obtained. These ultrastructural studies of AAG and gastric adenocarcinoma revealed lipid intra- and extra-cellularly accumulation associated with a severe prenecrotic hypoxia and mitochondrial degeneration. A deep insight into the metabolic profile of human healthy and neoplastic colon tissues was gained using ex vivo HR-MAS NMR spectroscopy in combination with multivariate methods: Principal Component Analysis (PCA) and Partial Least Squares Discriminant Analysis (PLS-DA). The NMR spectra of healthy tissues highlight different metabolic profiles with respect to those of neoplastic and microscopically normal colon specimens (these last obtained at least 15 cm far from the adenocarcinoma). Furthermore, metabolic variations are detected not only for neoplastic tissues with different histological diagnosis, but also for those classified identical by histological analysis. These findings suggest that the same subclass of colon carcinoma is characterized, at a certain degree, by metabolic heterogeneity. The statistical multivariate approach applied to the NMR data is crucial in order to find metabolic markers of the neoplastic state of colon tissues, and to correctly classify the samples. Significant different levels of choline containing compounds, taurine and myoinositol, were observed. Chapter 6 deals with the metabolic profile of normal and tumoral renal human tissues obtained by ex vivo HR-MAS NMR. The spectra of human normal cortex and medulla show the presence of differently distributed osmolytes as markers of physiological renal condition. The marked decrease or disappearance of these metabolites and the high lipid content (triglycerides and cholesteryl esters) is typical of clear cell renal carcinoma (RCC), while papillary RCC is characterized by the absence of lipids and very high amounts of taurine. This research is a contribution to the biochemical classification of renal neoplastic pathologies, especially for RCCs, which can be evaluated by in vivo MRS for clinical purposes. Moreover, these data help to gain a better knowledge of the molecular processes envolved in the onset of renal carcinogenesis.
Resumo:
Theory of aging postulates that aging is a remodeling process where the body of survivors progressively adapts to internal and external damaging agents they are exposed to during several decades. Thus , stress response and adaptation mechanisms play a fundamental role in the aging process where the capability of adaptating effects, certainly, also is related the lifespan of each individual. A key gene linking aging to stress response is indeed p21, an induction of cyclin-dependent kinase inhibitor which triggers cell growth arrest associated with senescence and damage response and notably is involved in the up-regulation of multiple genes that have been associated with senescence or implicated in age-related . This PhD thesis project that has been performed in collaboration with the Roninson Lab at Ordway Research Institute in Albany, NY had two main aims: -the testing the hypothesis that p21 polymorphisms are involved in longevity -Evaluating age-associated differences in gene expression and transcriptional response to p21 and DNA damage In the first project, trough PCR-sequencing and Sequenom strategies, we we found out that there are about 30 polymorphic variants in the p21 gene. In addition, we found an haplotpype located in -5kb region of the p21 promoter whose frequency is ~ 2 fold higher in centenarians than in the general population (Large-scale analysis of haplotype frequencies is currently in progress). Functional studies I carried out on the promoter highilighted that the ―centenarian‖ haplotype doesn’t affect the basal p21 promoter activity or its response to p53. However, there are many other possible physiological conditions in which the centenarian allele of the p21 promoter may potentially show a different response (IL6, IFN,progesterone, vitamin E, Vitamin D etc). In the second part, project #2, trough Microarrays we seeked to evaluate the differences in gene expression between centenarians, elderly, young in dermal fibroblast cultures and their response to p21 and DNA damage. Microarray analysis of gene expression in dermal fibroblast cultures of individuals of different ages yielded a tentative "centenarian signature". A subset of genes that were up- or downregulated in centenarians showed the same response to ectopic expression of p21, yielding a putative "p21-centenarian" signature. Trough RQ-PCR (as well Microarrays studies whose analysis is in progress) we tested the DNA damage response of the p21-centenarian signature genes showing a correlation stress/aging in additional sets of young and old samples treated with p21-inducing drug doxorubicin thus finding for a subset of of them , a response to stress age-related.
Resumo:
Supramolecular architectures can be built-up from a single molecular component (building block) to obtain a complex of organic or inorganic interactions creating a new emergent condensed phase of matter, such as gels, liquid crystals and solid crystal. Further the generation of multicomponent supramolecular hybrid architecture, a mix of organic and inorganic components, increases the complexity of the condensed aggregate with functional properties useful for important areas of research, like material science, medicine and nanotechnology. One may design a molecule storing a recognition pattern and programming a informed self-organization process enables to grow-up into a hierarchical architecture. From a molecular level to a supramolecular level, in a bottom-up fashion, it is possible to create a new emergent structure-function, where the system, as a whole, is open to its own environment to exchange energy, matter and information. “The emergent property of the whole assembly is superior to the sum of a singles parts”. In this thesis I present new architectures and functional materials built through the selfassembly of guanosine, in the absence or in the presence of a cation, in solution and on the surface. By appropriate manipulation of intermolecular non-covalent interactions the spatial (structural) and temporal (dynamic) features of these supramolecular architectures are controlled. Guanosine G7 (5',3'-di-decanoil-deoxi-guanosine) is able to interconvert reversibly between a supramolecular polymer and a discrete octameric species by dynamic cation binding and release. Guanosine G16 (2',3'-O-Isopropylidene-5'-O-decylguanosine) shows selectivity binding from a mix of different cation's nature. Remarkably, reversibility, selectivity, adaptability and serendipity are mutual features to appreciate the creativity of a molecular self-organization complex system into a multilevelscale hierarchical growth. The creativity - in general sense, the creation of a new thing, a new thinking, a new functionality or a new structure - emerges from a contamination process of different disciplines such as biology, chemistry, physics, architecture, design, philosophy and science of complexity.