670 resultados para pipeline
Resumo:
Welding is one of the most employed process for joining steel pipes. Although, manual welding is still the most used one, mechanized version and even automatized one have increased its demand. Thus, this work deals with girth welding of API 5L X65 pipes with 8” of nominal diameter and 8.0 mm thickness, beveled with V-30º narrow gap. Torch is moved by a bug carrier (mechanized welding) and further the parameters are controlled as a function of angular position (automatized welding). Welding parameters are presented for filling the joint with two-passes (root and filling/capping passes). Parameters for the root pass were extracted from previous author´s work with weldments carried out in plates, but validated in this work for pipe welding. GMAW processes were assessed with short-circuit metal transfer in both conventional and derivative modes using different technologies (RMD, STT and CMT). After the parameter determination, mechanical testing was performed for welding qualification (uniaxial tension, face and root bending, nick break, Charpy V-notch impact, microhardness and macrograph). The initially obtained results for RMD and CMT were acceptable for all testing and, in a second moment, also for the STT. However, weld beads carried out by using the conventional process failed and revealed the existence of lack of fusion, which required further parametrization. Thus, a Parameter-Variation System for Girth Welding (SVP) was designed and built to allow varying the welding parameters as a function of angular position by using an inclinometer. The parameters were set for each of the three angular positions (flat, vertical downhill and overhead). By using such equipment and approach, the conventional process with parameter variation allowed reducing the welding time for joint accomplishment of the order of 38% for the root pass and 30% for the filling/capping pass.
Resumo:
We present the stellar calibrator sample and the conversion from instrumental to physical units for the 24 μm channel of the Multiband Imaging Photometer for Spitzer (MIPS). The primary calibrators are A stars, and the calibration factor based on those stars is 4.54 × 10^-2 MJy sr^–1 (DN/s)^–1, with a nominal uncertainty of 2%. We discuss the data reduction procedures required to attain this accuracy; without these procedures, the calibration factor obtained using the automated pipeline at the Spitzer Science Center is 1.6% ± 0.6% lower. We extend this work to predict 24 μm flux densities for a sample of 238 stars that covers a larger range of flux densities and spectral types. We present a total of 348 measurements of 141 stars at 24 μm. This sample covers a factor of ~460 in 24 μm flux density, from 8.6 mJy up to 4.0 Jy. We show that the calibration is linear over that range with respect to target flux and background level. The calibration is based on observations made using 3 s exposures; a preliminary analysis shows that the calibration factor may be 1% and 2% lower for 10 and 30 s exposures, respectively. We also demonstrate that the calibration is very stable: over the course of the mission, repeated measurements of our routine calibrator, HD 159330, show a rms scatter of only 0.4%. Finally, we show that the point-spread function (PSF) is well measured and allows us to calibrate extended sources accurately; Infrared Astronomy Satellite (IRAS) and MIPS measurements of a sample of nearby galaxies are identical within the uncertainties.
Resumo:
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
This thesis introduces two related lines of study on classification of hyperspectral images with nonlinear methods. First, it describes a quantitative and systematic evaluation, by the author, of each major component in a pipeline for classifying hyperspectral images (HSI) developed earlier in a joint collaboration [23]. The pipeline, with novel use of nonlinear classification methods, has reached beyond the state of the art in classification accuracy on commonly used benchmarking HSI data [6], [13]. More importantly, it provides a clutter map, with respect to a predetermined set of classes, toward the real application situations where the image pixels not necessarily fall into a predetermined set of classes to be identified, detected or classified with.
The particular components evaluated are a) band selection with band-wise entropy spread, b) feature transformation with spatial filters and spectral expansion with derivatives c) graph spectral transformation via locally linear embedding for dimension reduction, and d) statistical ensemble for clutter detection. The quantitative evaluation of the pipeline verifies that these components are indispensable to high-accuracy classification.
Secondly, the work extends the HSI classification pipeline with a single HSI data cube to multiple HSI data cubes. Each cube, with feature variation, is to be classified of multiple classes. The main challenge is deriving the cube-wise classification from pixel-wise classification. The thesis presents the initial attempt to circumvent it, and discuss the potential for further improvement.
Resumo:
Background An early objective biomarker to predict the severity of hypoxic-ischaemic encephalopathy (HIE) and identify infants suitable for intervention remains elusive. This thesis aims to progress metabolomic markers of HIE through a pipeline of biomarker discovery and validation by employing a novel untargeted mass spectrometry metabolomic method. Methodology Term infants with perinatal asphyxia were recruited, all having umbilical cord blood (UCB) drawn and biobanked within three hours of birth. HIE was defined by Sarnat score at 24hours and continuous multichannel-EEG. Infant neurodevelopment was assessed at 36-42 months using the Bayley Scales of Infant and Toddler Development Ed. III (BSID-III). Untargeted metabolomic analysis of UCB was performed using direct injection FT-ICR mass spectrometry (DI FT-ICR MS). Putative metabolite annotations and lipid classes were assigned and pathway analysis was performed. Results Untargeted metabolomic analysis: Thirty enrolled infants were diagnosed with HIE, including 17 mild, 8 moderate, and 5 severe cases. Pathway analysis revealed that ΔHIE was associated with a 50% and 75% perturbation of tryptophan and pyrimidine metabolism respectively, alongside alterations in amino acid pathways. Significant metabolite alterations were detected from six putatively identified lipid classes including fatty acyls, glycerolipids, glycerophospholipids, sphingolipids, sterol lipids and prenol lipids. Outcome prediction: Metabolite model scores significantly correlated with outcome R=0.429 (model A) and R=0.549 (model B) respectively. Model B demonstrates the potential to predict both severe outcome (AUROC of 0.915) and intact survival (AUROC of 0.800). The effect of haemolysis: On average 5% of polar and 1.5% of non-polar features were altered between paired haemolysed and clean samples. However unsupervised multivariate analysis concluded that the preanalytical variability introduced by haemolysis was negligible compared with the inherent biological inter-individual variability. Conclusion This research has employed untargeted metabolomics to identify potential early cord blood biomarkers of HIE and has performed the technical validation of previously proposed markers.
Resumo:
BACKGROUND: The role of the microbiome has become synonymous with human health and disease. Bile acids, as essential components of the microbiome, have gained sustained credibility as potential modulators of cancer progression in several disease models. At physiological concentrations, bile acids appear to influence cancer phenotypes, although conflicting data surrounds their precise physiological mechanism of action. Previously, we demonstrated bile acids destabilised the HIF-1α subunit of the Hypoxic-Inducible Factor-1 (HIF-1) transcription factor. HIF-1 overexpression is an early biomarker of tumour metastasis and is associated with tumour resistance to conventional therapies, and poor prognosis in a range of different cancers. METHODS: Here we investigated the effects of bile acids on the cancer growth and migratory potential of cell lines where HIF-1α is known to be active under hypoxic conditions. HIF-1α status was investigated in A-549 lung, DU-145 prostate and MCF-7 breast cancer cell lines exposed to bile acids (CDCA and DCA). Cell adhesion, invasion, migration was assessed in DU-145 cells while clonogenic growth was assessed in all cell lines. RESULTS: Intracellular HIF-1α was destabilised in the presence of bile acids in all cell lines tested. Bile acids were not cytotoxic but exhibited greatly reduced clonogenic potential in two out of three cell lines. In the migratory prostate cancer cell line DU-145, bile acids impaired cell adhesion, migration and invasion. CDCA and DCA destabilised HIF-1α in all cells and significantly suppressed key cancer progression associated phenotypes; clonogenic growth, invasion and migration in DU-145 cells. CONCLUSIONS: These findings suggest previously unobserved roles for bile acids as physiologically relevant molecules targeting hypoxic tumour progression.
Resumo:
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
The effectiveness of an optimization algorithm can be reduced to its ability to navigate an objective function’s topology. Hybrid optimization algorithms combine various optimization algorithms using a single meta-heuristic so that the hybrid algorithm is more robust, computationally efficient, and/or accurate than the individual algorithms it is made of. This thesis proposes a novel meta-heuristic that uses search vectors to select the constituent algorithm that is appropriate for a given objective function. The hybrid is shown to perform competitively against several existing hybrid and non-hybrid optimization algorithms over a set of three hundred test cases. This thesis also proposes a general framework for evaluating the effectiveness of hybrid optimization algorithms. Finally, this thesis presents an improved Method of Characteristics Code with novel boundary conditions, which better characterizes pipelines than previous codes. This code is coupled with the hybrid optimization algorithm in order to optimize the operation of real-world piston pumps.
Resumo:
Volos city and its port are situated in the northern part of Pagassitikos Gulf, a shallow, semi-enclosed marine area in central Greece. A wastewater treatment plant (WWTP) and pipeline operate in the same area. Muddy sediments with low carbonate contents cover most of the seabed, except for the Volos embayment and the western part of the gulf where sandy carbonates prevail. Bulk organic carbon contents and the organic carbon contents of the clay fractions are high in the vicinity of Volos embayment. High element (Pb, Cu, and Zn) contents and Igeo (geoaccumulation index) values were found for the clay fractions in the northern part of Pagassitikos Gulf. This enrichment is attributed to the discharge of raw domestic and industrial effluents of Volos city and port before the WWTP was installed. The dispersal of pollutants is essentially controlled by diffusion from point sources (city, port and WWTP) and is limited to Volos Bay. Relatively high Mn levels are ascribed to diagenetic formation of manganese carbonates (authigenic phase), whereas Cr and Ni are elevated due to weathering of ultrabasic formations on land.
Resumo:
Pipelines are one of the safest means to transport crude oil, but are not spill-free. This is of concern in North America, due to the large volumes of crude oil shipped by Canadian producers and the lengthy network of pipelines. Each pipeline crosses many rivers, supporting a wide variety of human activities, and rich aquatic life. However, there is a knowledge gap on the risks of contamination of river beds due to oil spills. This thesis addresses this knowledge gap by focussing on mechanisms that transport water (and contaminants) from the free surface flow to the bed sediments, and vice-versa. The work focuses on gravel rivers, in which bed sediments are sufficiently permeable that pressure gradients caused by the interactions of flow with topographic elements (gravel bars), or changes in direction induce exchanges of water between the free surface flow and the bed, known as hyporheic flows. The objectives of the thesis are: to present a new method to visualize and quantify hyporheic flows in laboratory experiments; to conduct a novel series of experiments on hyporheic flow induced by a gravel bar under different free surface flows. The new method to quantify hyporheic flows rests on injections of a solution of dye and water. The method yielded accurate flow lines, and reasonable estimates of the hyporheic flow velocities. The present series of experiments was carried out in a 11 m long, 0.39 m wide, and 0.41 m deep tilting flume. The gravel had a mean particle size of 7.7 mm. Different free surface flows were imposed by changing the flume slope and flow depth. Measured hyporheic flows were turbulent. Smaller free surface flow depths resulted in stronger hyporheic flows (higher velocities, and deeper dye penetration into the sediment). A significant finding is that different free surface flows (different velocities, Reynolds number, etc.) produce similar hyporheic flows as long as the downstream hydraulic gradients are similar. This suggests, that for a specified bar geometry, the characteristics of the hyporheic flows depend on the downstream hydraulic gradients, and not or only minimally on the internal dynamics of the free surface flow.
Resumo:
Pipelines extend thousands of kilometers across wide geographic areas as a network to provide essential services for modern life. It is inevitable that pipelines must pass through unfavorable ground conditions, which are susceptible to natural disasters. This thesis investigates the behaviour of buried pressure pipelines experiencing ground distortions induced by normal faulting. A recent large database of physical modelling observations on buried pipes of different stiffness relative to the surrounding soil subjected to normal faults provided a unique opportunity to calibrate numerical tools. Three-dimensional finite element models were developed to enable the complex soil-structure interaction phenomena to be further understood, especially on the subjects of gap formation beneath the pipe and the trench effect associated with the interaction between backfill and native soils. Benchmarked numerical tools were then used to perform parametric analysis regarding project geometry, backfill material, relative pipe-soil stiffness and pipe diameter. Seismic loading produces a soil displacement profile that can be expressed by isoil, the distance between the peak curvature and the point of contraflexure. A simplified design framework based on this length scale (i.e., the Kappa method) was developed, which features estimates of longitudinal bending moments of buried pipes using a characteristic length, ipipe, the distance from peak to zero curvature. Recent studies indicated that empirical soil springs that were calibrated against rigid pipes are not suitable for analyzing flexible pipes, since they lead to excessive conservatism (for design). A large-scale split-box normal fault simulator was therefore assembled to produce experimental data for flexible PVC pipe responses to a normal fault. Digital image correlation (DIC) was employed to analyze the soil displacement field, and both optical fibres and conventional strain gauges were used to measure pipe strains. A refinement to the Kappa method was introduced to enable the calculation of axial strains as a function of pipe elongation induced by flexure and an approximation of the longitudinal ground deformations. A closed-form Winkler solution of flexural response was also derived to account for the distributed normal fault pattern. Finally, these two analytical solutions were evaluated against the pipe responses observed in the large-scale laboratory tests.
Resumo:
INTRODUCTION: Acute myeloid leukemia (AML) is a heterogeneous clonal disorder often associated with dismal overall survival. The clinical diversity of AML is reflected in the range of recurrent somatic mutations in several genes, many of which have a prognostic and therapeutic value. Targeted next-generation sequencing (NGS) of these genes has the potential for translation into clinical practice. In order to assess this potential, an inter-laboratory evaluation of a commercially available AML gene panel across three diagnostic centres in the UK and Ireland was performed.
METHODS: DNA from six AML patient samples was distributed to each centre and processed using a standardised workflow, including a common sequencing platform, sequencing chips and bioinformatics pipeline. A duplicate sample in each centre was run to assess inter- and intra-laboratory performance.
RESULTS: An average sample read depth of 2725X (range 629-5600) was achieved using six samples per chip, with some variability observed in the depth of coverage generated for individual samples and between centres. A total of 16 somatic mutations were detected in the six AML samples, with a mean of 2.7 mutations per sample (range 1-4) representing nine genes on the panel. 15/16 mutations were identified by all three centres. Allelic frequencies of the mutations ranged from 5.6 to 53.3 % (median 44.4 %), with a high level of concordance of these frequencies between centres, for mutations detected.
CONCLUSION: In this inter-laboratory comparison, a high concordance, reproducibility and robustness was demonstrated using a commercially available NGS AML gene panel and platform.
Resumo:
This paper aims to determinate the water flowrate using Time Transient and Cross-Correlation techniques. The detection system uses two NaI(Tl) detectors adequately positioned on the outside of pipe and a gamma-ray source (82Br radiotracer). The water flowrate measurements using Time Transient and Cross-Correlation techniques were compared to invasive conventional measurements of the flowmeter previously installed in pipeline. Discrepancies between Time Transient and Cross-Correlation techniques flowrate values were found to be less than 3% in relation to conventional ones.
Resumo:
Fusobacterium necrophorum, a Gram negative, anaerobic bacterium, is a common cause of acute pharyngitis and tonsillitis and a rare cause of more severe infections of the head and neck. At the beginning of the project, there was no available genome sequence for F. necrophorum. The aim of this project was to sequence the F. necrophorum genome and identify and study its putative virulence factors contained using in silico and in vitro analysis. Type strains JCM 3718 and JCM 3724,F. necrophorum subspecies necrophorum (Fnn) and funduliforme (Fnf), respectively, and strain ARU 01 (Fnf), isolated from a patient with LS, were commercially sequenced by Roche 454 GS-FLX+ next generation sequencing and assembled into contigs using Roche GS Assembler. Sequence data was annotated semi-automatically, using the xBASE pipeline, BLASTp and Pfam. The F. necrophorum genome was determined to be approximately 2.1 – 2.3 Mb in size, with an estimated 1,950 ORFs and includes genes for a leukotoxin, ecotin, haemolysin, haemagglutinin, haemin receptor, adhesin and type Vb and Vc secretion systems. The prevalence of the leukotoxin gene was investigated in strains JCM 3718, JCM 3724 and ARU 01, as well as a clinical collection of 25 Fnf strains, identified using biochemical and molecular tests. The leukotoxin operon was found to be universal within the strain collection by PCR. HL-60 cells subjected to aliquots of concentrated high molecular weight culture supernatant, predicted to contain the secreted leukotoxins of strains JCM 3718, JCM 3724 and ARU 01, were killed in a dose-dependent manner. The cytotoxic effect of the leukotoxin against human donor white blood cells was also tested to validate the HL-60 assay. The differences in the results between the two assays were not statistically significant. Ecotin, a serine protease inhibitor, was found to be present in 100 % of the strain collection and had a highly conserved sequence with primary and secondary binding sites exposed on opposing sides of the protein. During enzyme inhibition studies, a purified recombinant F. necrophorum ecotin protein inhibited human neutrophil elastase, a protease that degrades bacteria at inflammation sites, and human plasma kallikrein, a component of the host clotting cascade. The recombinant ecotin also prolonged human plasma clotting times by up to 7-fold for the extrinsic pathway, and up to 40-fold for the intrinsic pathway. The genome sequence data provides important information about F. necrophorum type strains and enables comparative study between strains and subspecies. Results from the leukotoxin and ecotin assays can be used to build up an understanding of how the organism behaves during infection.
Resumo:
Les réseaux de capteurs sont formés d’un ensemble de dispositifs capables de prendre individuellement des mesures d’un environnement particulier et d’échanger de l’information afin d’obtenir une représentation de haut niveau sur les activités en cours dans la zone d’intérêt. Une telle détection distribuée, avec de nombreux appareils situés à proximité des phénomènes d’intérêt, est pertinente dans des domaines tels que la surveillance, l’agriculture, l’observation environnementale, la surveillance industrielle, etc. Nous proposons dans cette thèse plusieurs approches pour effectuer l’optimisation des opérations spatio-temporelles de ces dispositifs, en déterminant où les placer dans l’environnement et comment les contrôler au fil du temps afin de détecter les cibles mobiles d’intérêt. La première nouveauté consiste en un modèle de détection réaliste représentant la couverture d’un réseau de capteurs dans son environnement. Nous proposons pour cela un modèle 3D probabiliste de la capacité de détection d’un capteur sur ses abords. Ce modèle inègre également de l’information sur l’environnement grâce à l’évaluation de la visibilité selon le champ de vision. À partir de ce modèle de détection, l’optimisation spatiale est effectuée par la recherche du meilleur emplacement et l’orientation de chaque capteur du réseau. Pour ce faire, nous proposons un nouvel algorithme basé sur la descente du gradient qui a été favorablement comparée avec d’autres méthodes génériques d’optimisation «boites noires» sous l’aspect de la couverture du terrain, tout en étant plus efficace en terme de calculs. Une fois que les capteurs placés dans l’environnement, l’optimisation temporelle consiste à bien couvrir un groupe de cibles mobiles dans l’environnement. D’abord, on effectue la prédiction de la position future des cibles mobiles détectées par les capteurs. La prédiction se fait soit à l’aide de l’historique des autres cibles qui ont traversé le même environnement (prédiction à long terme), ou seulement en utilisant les déplacements précédents de la même cible (prédiction à court terme). Nous proposons de nouveaux algorithmes dans chaque catégorie qui performent mieux ou produits des résultats comparables par rapport aux méthodes existantes. Une fois que les futurs emplacements de cibles sont prédits, les paramètres des capteurs sont optimisés afin que les cibles soient correctement couvertes pendant un certain temps, selon les prédictions. À cet effet, nous proposons une méthode heuristique pour faire un contrôle de capteurs, qui se base sur les prévisions probabilistes de trajectoire des cibles et également sur la couverture probabiliste des capteurs des cibles. Et pour terminer, les méthodes d’optimisation spatiales et temporelles proposées ont été intégrées et appliquées avec succès, ce qui démontre une approche complète et efficace pour l’optimisation spatio-temporelle des réseaux de capteurs.