944 resultados para nanostructured materials


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Oversized materials is the digitized contents of one box (OS1) that consists of correspondence and an address from Box 2, Folders 12, 13 and 17.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Oversized materials is the digitized contents of one box (OS1) that consists of correspondence and an address from Box 2, Folders 12, 13 and 17.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents finite element analysis of laminated anisotropic beams of bimodulus materials. The finite element has 16 d.o.f. and uses the displacement field in terms of first order Hermite interpolation polynomials. As the neutral axis position may change from point to point along the length of the beam, an iterative procedure is employed to determine the location of zero strain points along the length. Using this element some problems of laminated beams of bimodulus materials are solved for concentrated loads/moments perpendicular and parallel to the layering planes as well as combined loads.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Digital image

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Much of physical education curriculum in the developed world and specifically in Australia tends to be guided in principle by syllabus documents that represent, in varying degrees, some form of government education priorities. Through the use of critical discourse analysis we analyze one such syllabus example (an official syllabus document of one of the Australian States) to explore the relationships between the emancipatory/social justice expectations presented in the rubric of and introduction to the official syllabus document, and the language details of learning outcomes that indicate how the expectations might be satisfied. Given the complexity and multilevel pathways of message systems/ideologies we question the efficacy of such documents oriented around social justice principles to genuinely deliver more radical agendas which promote social change and encourage a preparedness to engage in social action leading to a betterment of society.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Measurement of the chemical shifts ΔE of the K-absorption edge in both crystalline and amorphous states of several solids shows that ΔE is generally smaller in the amorphous state. More covalent solids appear to be associated with small values of ΔE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Three-dimensional (3D) Fe2(MoO4)3 microspheres with ultrathin nanosheet constituents are first synthesized as anode materials for the lithium-ion battery. It is interesting that the single-crystalline nanosheets allow rapid electron/ion transport on the inside, and the high porosity ensures fast diffusion of liquid electrolyte in energy storage applications. The electrochemical properties of Fe2(MoO4)3 as anode demonstrates that 3D Fe2(MoO4)3 microspheres deliver an initial capacity of 1855 mAh/g at a current density of 100 mA/g. Particularly, when the current density is increased to 800 mA/g, the reversible capacity of Fe2(MoO4)3 anode still arrived at 456 mAh/g over 50 cycles. The large and reversible capacities and stable charge–discharge cycling performance indicate that Fe2(MoO4)3 is a promising anode material for lithium battery applications. Graphical abstract The electrochemical properties of Fe2(MoO4)3 as anode demonstrates that 3D Fe2(MoO4)3 microspheres delivered an initial capacity of 1855 mAh/g at a current density of 100 mA/g. When the current density was increased to 800 mA/g, the Fe2(MoO4)3 still behaved high reversible capacity and good cycle performance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Scales provide optical disguise, low water drag and mechanical protection to fish, enabling them to survive catastrophic environmental disasters, predators and microorganisms. The unique structures and stacking sequences of fish scales inspired the fabrication of artificial nanostructures with salient optical, interfacial and mechanical properties. Herein, we describe fish-scale bio-inspired multifunctional ZnO nanostructures that have similar morphology and structure to the cycloid scales of the Asian Arowana. These nanostructured coatings feature tunable light refraction and reflection, modulated surface wettability and damage-tolerant mechanical properties. The salient properties of these multifunctional nanostructures are promising for applications in: - (i) optical coatings, sensing or lens arrays for use in reflective displays, packing, advertising and solar energy harvesting; - (ii) self-cleaning surfaces, including anti-smudge, anti-fouling and anti-fogging, and self-sterilizing surfaces, and; - (iii) mechanical/chemical barrier coatings. This study provides a low-cost and large-scale production method for the facile fabrication of these bio-inspired nanostructures and provides new insights for the development of novel functional materials for use in 'smart' structures and applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is a challenge to increase the visible-light photoresponses of wide-gap metal oxides. In this study, we proposed a new strategy to enhance the visible-light photoresponses of wide-gap semiconductors by deliberately designing a multi-scale nanostructure with controlled architecture. Hollow ZnO microspheres with constituent units in the shape of one-dimensional (1D) nanowire networks, 2D nanosheet stacks, and 3D mesoporous nanoball blocks are synthesized via an approach of two-step assembly, where the oligomers or the constituent nanostructures with specially designed structures are first formed, and then further assembled into complex morphologies. Through deliberate designing of constituent architectures allowing multiple visible-light scattering, reflections, and dispersion inside the multiscale nanostructures, enhanced wide range visible-light photoresponses of the ZnO hollow microspheres were successfully achieved. Compared to the one-step synthesized ZnO hollow microspheres, where no nanostructured constituents were produced, the ZnO hollow microspheres with 2D nanosheet stacks presented a 50 times higher photocurrent in the visible-light range (λ > 420 nm). The nanostructure induced visible-light photoresponse enhancement gives a direction to the development of novel photosensitive materials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Morphology-controlled bilayer TiO2 nanostructures consisting of one-dimensional (1D) nanowire bottom arrays and a three-dimensional (3D) dendritic microsphere top layer were synthesized via a one-step hydrothermal method. These novel 1D-3D bilayer photoanodes demonstrated the highest energy conversion efficiency of 7.2% for rutile TiO2 dye-sensitized solar cells to date, with TiCl4 post-treatment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reticulated porous Ti3AlC2 ceramic, a member of the MAX-phase family (Mn+1AXn phases, where M is an early transition metal, A is an A-group element, and X is carbon and/or nitrogen), was prepared from the highly dispersed aqueous suspension by a replica template method. Through a cathodic electrogeneration method, nanocrystalline catalytic CeO2 coatings were deposited on the conductive porous Ti 3AlC2 supports. By adjusting the pH value and cathodic deposition current, coatings exhibiting nanocellar, nanosheets-like, or bubble-free morphologies can be obtained. This work expects to introduce a novel practically feasible material system and a catalytic coating preparation technique for gas exhaust catalyst devices.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The constitutive model for a magnetostrictive material and its effect on the structural response is presented in this article. The example of magnetostrictive material considered is the TERFENOL-D. As like the piezoelectric material, this material has two constitutive laws, one of which is the sensing law and the other is the actuation law, both of which are highly coupled and non-linear. For the purpose of analysis, the constitutive laws can be characterized as coupled or uncoupled and linear or non linear. Coupled model is studied without assuming any explicit direct relationship with magnetic field. In the linear coupled model, which is assumed to preserve the magnetic flux line continuity, the elastic modulus, the permeability and magneto-elastic constant are assumed as constant. In the nonlinear-coupled model, the nonlinearity is decoupled and solved separately for the magnetic domain and the mechanical domain using two nonlinear curves, namely the stress vs. strain curve and the magnetic flux density vs. magnetic field curve. This is performed by two different methods. In the first, the magnetic flux density is computed iteratively, while in the second, the artificial neural network is used, where in the trained network will give the necessary strain and magnetic flux density for a given magnetic field and stress level. The effect of nonlinearity is demonstrated on a simple magnetostrictive rod.