981 resultados para multiple beam interference microscopy
Resumo:
This paper reports research conducted among theaged residents of a rural, Southwestern Ugandanvillage. It documents their knowledge ofHIV/AIDS, their perceptions of their own riskof infection, and the multiple impacts of thecurrent HIV/AIDS epidemic on their lives. Mostolder individuals have a sound understanding ofthe sexual transmission of HIV, and someconsider themselves to be at risk of infectionthrough having multiple sexual partners. Theyattempt to limit their children's exposure toHIV, but many of these children have left thevillage to live in urban areas of relativelyhigh HIV prevalence. The loss of adult childrendeprives the aged of any support these childrenmight have provided as their parents'capabilities declined with advancing age.Female-headed households were more affected inthis way than were male-headed households. TheAIDS epidemic has increased the number ofburials taking place in the village, and theiraccumulated costs, both in time and money, andcreated new hardships for the aged, who alsohave to cope with grief that accompaniescontinuing deaths among their children andtheir contemporaries' children.
Resumo:
Low participation at the employee or worksite level limits the potential public health impact of worksite-based interventions. Ecological models suggest that multiple levels of influence operate to determine participation patterns in worksite health promotion programs. Most investigations into the determinants of low participation study the intrapersonal, interpersonal, and institutional influences on employee participation. Community- and policy-level influences have not received attention, nor has consideration been given to worksite-level participation issues. The purpose of this article is to discuss one macrosocial theoretical perspective—political economy of health—that may guide practitioners and researchers interested in addressing the community- and policy-level determinants of participation in worksite health promotion programs. The authors argue that using theory to investigate the full spectrum of determinants offers a more complete range of intervention and research options for maximizing employee and worksite levels of participation.
Resumo:
We report the observation of multiple bifurcations in a nonlinear Hamiltionian system: laser-cooled atoms in a standing wave with single-frequency intensity modulation. We provide clear evidence of the occurrence of bifurcations by analyzing the atomic momentum distributions.
Resumo:
We investigate the fluorescence spectrum of a two-level atom driven by a multiple amplitude-modulated field. The driving held is modeled as a polychromatic field composed of a strong central (resonant) component and a large number of symmetrically detuned sideband fields displaced from the central component by integer multiples of a constant detuning. Spectra obtained here differ qualitatively from those observed for a single pair of modulating fields [B. Blind, P.R. Fontana, and P. Thomann, J. Phys. B 13, 2717 (1980)]. In the case of a small number of the modulating fields, a multipeaked spectrum is obtained with the spectral features located at fixed frequencies that are independent of the number of modulating fields and their Rabi frequencies. As the number of the modulating fields increases, the spectrum ultimately evolves to the well-known Mellow triplet with the sidebands shifted from the central component by an effective Rabi frequency whose magnitude depends on the initial relative phases of the components of the driving held. For equal relative phases, the effective Rabi frequency of the driving field can be reduced to zero resulting in the disappearance of fluorescence spectrum, i.e., the atom can stop interacting with the field. When the central component and the modulating fields are 180 degrees out of phase, the spectrum retains its triplet structure with the sidebands located at frequencies equal to the sum of the Rabi frequencies of the component of the driving field. Moreover, we shaw that the frequency of spontaneous emission can be controlled and switched from one frequency to another when the Rabi frequency or initial phase of the modulating fields are varied.
Resumo:
C. L. Isaac and A. R. Mayes (1999a, 1999b) compared forgetting rates in amnesic patients and normal participants across a range of memory tasks. Although the results are complex, many of them appear to be replicable and there are several commendable features to the design and analysis. Nevertheless, the authors largely ignored 2 relevant literatures: the traditional literature on proactive inhibition/interference and the formal analyses of the complexity of the bindings (associations) required for memory tasks. It is shown how the empirical results and conceptual analyses in these literatures are needed to guide the choice of task, the design of experiments, and the interpretation of results for amnesic patients and normal participants.
Resumo:
We study the effect of quantum interference on the population distribution and absorptive properties of a V-type three-level atom driven by two lasers of unequal intensities and different angular frequencies. Three coupling configurations of the lasers to the atom are analysed: (a) both lasers coupled to the same atomic transition, (b) each laser coupled to different atomic transition and (c) each laser coupled to both atomic transitions. Dressed stales for the three coupling configurations are identified, and the population distribution and absorptive properties of the weaker field are interpreted in terms of transition dipole moments and transition frequencies among these dressed states. In particular, we find that in the first two cases there is no population inversion between the bare atomic states, but the population can be trapped in a superposition of the dressed states induced by quantum interference and the stronger held. We show that the trapping of the population, which results from the cancellation of transition dipole moments, does not prevent the weaker field to be coupled to the cancelled (dark) transitions. As a result, the weaker field can be strongly amplified on transparent transitions. In the case of each laser coupled to both atomic transitions the population can be trapped in a linear superposition of the excited bare atomic states leaving the ground state unpopulated in the steady state. Moreover, we find that the absorption rate of the weaker field depends on the detuning of the strong field from the atomic resonances and the splitting between the atomic excited states. When the strong held is resonant to one of the atomic transitions a quasi-trapping effect appears in one of the dressed states. In the quasi-trapping situation all the transition dipole moments are different from zero, which allows the weaker field to be amplified on the inverted transitions. When the strong field is tuned halfway between the atomic excited states, the population is completely trapped in one of the dressed states and no amplification is found for the weaker field.
Resumo:
We study a three-level atomic system of the vee type, but driven on only one transition by a monochromatic laser. It is shown that the gain of a probe beam, recently predicted for this system by Menon and Agarwal (Menon S and Agarwal G 2000 Phys. Rev. A 61 13 807), is due to an unexpected amplification on a completely inverted, nondecaying (dark) transition. This prediction violates the well known balance condition between the population inversion and the coupling strength of the probe field to the inverted transition, which requires that the coupling strength reduces with increasing population inversion. We show that the condition may be violated only if the probe field selectively couples to just one of the atomic transitions: when it couples to both transitions, the balance condition is satisfied and the system is transparent for the probe field coupled to the dark transitions. No amplification is possible in the latter case.
Resumo:
Dysfunction of the articulatory subsystem (i.c.. the lips, tongue, and jaw) has bccn identified as a major contributor to the reduction in speech intelligibility experienced by a high proportion of people with multiple sclerosis (MS). In particular. consonant imprecision has been reported to be the articulatory deficit that contributes most to variations in overall intelligibility of MS speakers. Electropalatography(EPG) IS an instrurncntal technique that visually documents the location and timing of tongue-topalatc contacts during speech. Although such a technique would be valuablc in objectively assessing the articulatory disturbances exhibited by individuals with dysarthria ia motor speech disorder) associated with MS, to-date no such study ha< been reported. The aim of the present study was to use EPG to assess tongue-to-palate contact patterns and articulatory timing in patients with dysarthria associated with MS. A dysarthric participant with a diagnosis of definite MS was fitted with an acrylic EPG palate (Reading EPG.?) and asked to read aloud a list of single syllable words which contained lingual consonants in the word-initial position and in consonant clusters. Each mord was repeated five times. The EPG palate was specifically moulded to tit the participant's hard palate and contained 62 electrodes that detected the tongue contacts. A non-neurologically impaired participant matched for age and sex servcd as a control. The results of the study revealed that the tongue-to-palate contacts produced by the participant with MS varied from those produced by the control in a number of ways in regard to spatial configurations and timing characteristics exhibited. The rcsults arc discussed in relation to the neuropathophysiological effects of MS on speech production. The potcntial use of EPG in programs for treating speech disorders associated with MS will be highlightcd.
Resumo:
This paper reports on the design and development of a dividing/phasing network for a compact switched-beam array antenna for Land-vehicle mobile satellite communications, The device is formed by a switched radial divider/combiner and 1-bit phase shifters and generates a sufficient number of beams for the proper satellite tracking.
Resumo:
We present a teleportation protocol based upon the entanglement produced from Fock states incident onto a beam splitter of arbitrary transmissivity. The teleportation fidelity is analyzed, its trends being explained from consideration of a beam splitter's input-output characteristics.
Resumo:
The 16S rRNA gene (16S rDNA) is currently the most widely used gene for estimating the evolutionary history of prokaryotes, To date, there are more than 30 000 16S rDNA sequences available from the core databases, GenBank, EMBL and DDBJ, This great number may cause a dilemma when composing datasets for phylogenetic analysis, since the choice and number of reference organisms are known to affect the resulting tree topology. A group of sequences appearing monophyletic in one dataset may not be so in another. This can be especially problematic when establishing the relationships of distantly related sequences at the division (phylum) level. In this study, a multiple-outgroup approach to resolving division-level phylogenetic relationships is suggested using 16S rDNA data. The approach is illustrated by two case studies concerning the monophyly of two recently proposed bacterial divisions, OP9 and OP10.
Resumo:
We used event-related functional magnetic resonance imaging (fMRI) to investigate neural responses associated with the semantic interference (SI) effect in the picture-word task. Independent stage models of word production assume that the locus of the SI effect is at the conceptual processing level (Levelt et al. [1999]: Behav Brain Sci 22:1-75), whereas interactive models postulate that it occurs at phonological retrieval (Starreveld and La Heij [1996]: J Exp Psychol Learn Mem Cogn 22:896-918). In both types of model resolution of the SI effect occurs as a result of competitive, spreading activation without the involvement of inhibitory links. These assumptions were tested by randomly presenting participants with trials from semantically-related and lexical control distractor conditions and acquiring image volumes coincident with the estimated peak hemodynamic response for each trial. Overt vocalization of picture names occurred in the absence of scanner noise, allowing reaction time (RT) data to be collected. Analysis of the RT data confirmed the SI effect. Regions showing differential hemodynamic responses during the SI effect included the left mid section of the middle temporal gyrus, left posterior superior temporal gyrus, left anterior cingulate cortex, and bilateral orbitomedial prefrontal cortex. Additional responses were observed in the frontal eye fields, left inferior parietal lobule, and right anterior temporal and occipital cortex. The results are interpreted as indirectly supporting interactive models that allow spreading activation between both conceptual processing and phonological retrieval levels of word production. In addition, the data confirm that selective attention/response suppression has a role in resolving the SI effect similar to the way in which Stroop interference is resolved. We conclude that neuroimaging studies can provide information about the neuroanatomical organization of the lexical system that may prove useful for constraining theoretical models of word production. (C) 2001 Wiley-Liss, Inc.
Resumo:
In the past century, the debate over whether or not density-dependent factors regulate populations has generally focused on changes in mean population density, ignoring the spatial variance around the mean as unimportant noise. In an attempt to provide a different framework for understanding population dynamics based on individual fitness, this paper discusses the crucial role of spatial variability itself on the stability of insect populations. The advantages of this method are the following: (1) it is founded on evolutionary principles rather than post hoc assumptions; (2) it erects hypotheses that can be tested; and (3) it links disparate ecological schools, including spatial dynamics, behavioral ecology, preference-performance, and plant apparency into an overall framework. At the core of this framework, habitat complexity governs insect spatial variance. which in turn determines population stability. First, the minimum risk distribution (MRD) is defined as the spatial distribution of individuals that results in the minimum number of premature deaths in a population given the distribution of mortality risk in the habitat (and, therefore, leading to maximized population growth). The greater the divergence of actual spatial patterns of individuals from the MRD, the greater the reduction of population growth and size from high, unstable levels. Then, based on extensive data from 29 populations of the processionary caterpillar, Ochrogaster lunifer, four steps are used to test the effect of habitat interference on population growth rates. (1) The costs (increasing the risk of scramble competition) and benefits (decreasing the risk of inverse density-dependent predation) of egg and larval aggregation are quantified. (2) These costs and benefits, along with the distribution of resources, are used to construct the MRD for each habitat. (3) The MRD is used as a benchmark against which the actual spatial pattern of individuals is compared. The degree of divergence of the actual spatial pattern from the MRD is quantified for each of the 29 habitats. (4) Finally, indices of habitat complexity are used to provide highly accurate predictions of spatial divergence from the MRD, showing that habitat interference reduces population growth rates from high, unstable levels. The reason for the divergence appears to be that high levels of background vegetation (vegetation other than host plants) interfere with female host-searching behavior. This leads to a spatial distribution of egg batches with high mortality risk, and therefore lower population growth. Knowledge of the MRD in other species should be a highly effective means of predicting trends in population dynamics. Species with high divergence between their actual spatial distribution and their MRD may display relatively stable dynamics at low population levels. In contrast, species with low divergence should experience high levels of intragenerational population growth leading to frequent habitat-wide outbreaks and unstable dynamics in the long term. Six hypotheses, erected under the framework of spatial interference, are discussed, and future tests are suggested.
Resumo:
Single cell genetic analysis is generally performed using PCR and FISH. Until recently, FISH has been the method of choice. FISH however is expensive, has significant misdiagnosis rates, can result in interpretation difficulties and is labour intensive making it unsuitable for high throughput processing. Recently fluorescent PCR reliability has increased to levels at or surpassing FISH whilst maintaining low cost. However, PCR accuracy has been a concern due to allelic dropout. Multiplex PCR can now increase accuracy by using multiple markers for each chromosome to firstly provide diagnosis if markers fail and,or secondly confirm diagnosis. We compare a variety of diagnostic methods and demonstrate for the first time a multiplex PCR system providing simultaneous diagnosis and confirmation of the major aneuploidy chromosomes (21, 18, 13) and sex as well as DNA fingerprint in single cells. We also discuss the implications of using PCR for aneuploidy screening in preimplantation genetic diagnosis. (C) 2001 Elsevier Science Ireland Ltd. All rights reserved.
Resumo:
Hsp10 (10-kDa heat shock protein, also known as chaperonin 10 or Cpn10) is a co-chaperone for Hsp60 in the protein folding process. This protein has also been shown to be identical to the early pregnancy factor, which is an immunosuppressive growth factor found in maternal serum. In this study we have used immunogold electron microscopy to study the subcellular localization of Hsp10 in rat tissues sections embedded in LR Gold resin employing polyclonal antibodies raised against different regions of human Hsp10. In all rat tissues examined including liver, heart, pancreas, kidney, anterior pituitary, salivary gland, thyroid, and adrenal gland, antibodies to Hsp10 showed strong labeling of mitochondria. However, in a number of tissues, in addition to the mitochondrial labeling, strong and highly specific labeling with the Hsp10 antibodies was also observed in several extramitochondrial compartments. These sites included zymogen granules in pancreatic acinar cells, growth hormone granules in anterior pituitary, and secretory granules in PP pancreatic islet cells. Additionally, the mature red blood cells which lack mitochondria, also showed strong reactivity with the Hsp10 antibodies. The observed labeling with the Hsp10 antibodies, both within mitochondria as well as in other compartments/cells, was abolished upon omission of the primary antibodies or upon preadsorption of the primary antibodies with the purified recombinant human Hsp10. These results provide evidence that similar to a number of other recently described mitochondrial proteins (viz., Hsp60, tumor necrosis factor receptor-associated protein- 1, P32 (gC1q-R) protein, and cytochrome c), Hsp10 is also found at a variety of specific extramitochondrial sites in normal rat tissue. These results raise important questions as to how these mitochondrial proteins are translocated to other compartments and their possible function(s) at these sites. The presence of these proteins at extramitochondrial sites in normal tissues has important implications concerning the role of mitochondria in apoptosis and genetic diseases.