962 resultados para flow-mediated dilation
Resumo:
The main goal of this study was to explore experiences induced by playing digital games (i.e. meaning of playing). In addition, the study aimed at structuring the larger entities of gaming experience. This was done by using theory-driven and data grounded approaches. Previously gaming experiences have not been explored as a whole. The consideration of gaming experiences on the basis of psychological theories and studies has also been rare. The secondary goal of this study was to clarify, whether the individual meanings of playing are connected with flow experience in an occasional gaming situation. Flow is an enjoyable experience and usually activities that induce flow are gladly repeated. Previously, flow has been proved to be an essential concept in the context of playing, but the relations between meanings of playing and flow have not been studied. The relations between gender and gaming experiences were examined throughout the study, as well as the relationship between gaming frequency and experiences. The study was divided into two sections, of which the first was composed according to the main goals. Its data was gathered by using an Internet questionnaire. The other section covered the themes that were formulated on the basis of the secondary aims. In that section, the participants played a driving game for 40 minutes and then filled in a questionnaire, which measured flow related experiences. In both sections, the participants were mainly young Finnish adults. All the participants in the second section (n = 60) had already participated in the first section (n = 267). Both qualitative and quantitative research techniques were used in the study. In the first section, freely described gaming experiences were classified according to the grounded theory. After that, the most common categories were further classified into the basic structures of gaming experience, some according to the existing theories of experience structure and some according to the data (i.e. grounded theory). In the other section flow constructs were measured and used as grouping variables in a cluster analysis. Three meaningful groups were compared regarding the meanings of gaming that were explored in the first section. The descriptions of gaming experiences were classified into four main categories, which were conceptions of the gaming process, emotions, motivations and focused attention. All the theory-driven categories were found in the data. This frame of reference can be utilized in future when reliability and validity of already existing methods for measuring gaming experiences are considered or new methods will be developed. The connection between the individual relevance of gaming and flow was minor. However, as the scope was specified to relations between primary meanings of playing and flow, it was noticed that attributing enjoyment to gaming did not lead to the strongest flow-experiences. This implies that the issue should be studied more in future. As a whole this study proves that gamer-related research from numerous vantage points can benefit from concentrating on gaming experiences.
Resumo:
Theoretical optimization studies of the performance of a combustion driven premixed two-phase flow gasdynamic laser are presented. The steady inviscid nonreacting quasi-one-dimensional two-phase flow model including appropriate finite rate vibrational kinetic rates has been used in the analysis. The analysis shows that the effect of the particles on the optimum performance of the two-phase laser is very small. The results are presented in graphical form. Applied Physics Letters is copyrighted by The American Institute of Physics.
Resumo:
This study explored the possibilities the psychophysiological methodology offer to flow research. Facial electromyography has often been used to index valence, and electrodermal activity to index arousal, the two basic dimensions of emotion. It was hypothesized that these measures can also be used to examine enjoyment, a basic component of flow experiment. A digital game was used to induce flow, and physiological activity of 32 subjects was measured continuously. Flow State Scale was used to assess flow. Activity of corrugator supercilii muscle, an index of negative valence, was negatively correlated with flow reports, as hypothesized. Contrary to hypothesis, skin conductance level, an index of arousal, was unrelated to self-reported flow. The results for association between flow and zygomaticus major and orbicularis oculi muscle activities, indices of positive valence, were inconclusive, possibly due to experimental design where only tonic measures were available. Psychophysiological methods are recommended for future studies of flow. Specifically, the time series approach may be particularly viable in examining the temporal aspects of flow, an area currently unexplored. Furthermore, it is suggested that digital game research would benefit from psychophysiological study of game-related flow.
Resumo:
Abstract is not available.
Resumo:
1. Some of the most damaging invasive plants are dispersed by frugivores and this is an area of emerging importance in weed management. It highlights the need for practical information on how frugivores affect weed population dynamics and spread, how frugivore populations are affected by weeds and what management recommendations are available. 2. Fruit traits influence frugivore choice. Fruit size, the presence of an inedible peel, defensive chemistry, crop size and phenology may all be useful traits for consideration in screening and eradication programmes. By considering the effect of these traits on the probability, quality and quantity of seed dispersal, it may be possible to rank invasive species by their desirability to frugivores. Fruit traits can also be manipulated with biocontrol agents. 3. Functional groups of frugivores can be assembled according to broad species groupings, and further refined according to size, gape size, pre- and post-ingestion processing techniques and movement patterns, to predict dispersal and establishment patterns for plant introductions. 4. Landscape fragmentation can increase frugivore dispersal of invasives, as many invasive plants and dispersers readily use disturbed matrix environments and fragment edges. Dispersal to particular landscape features, such as perches and edges, can be manipulated to function as seed sinks if control measures are concentrated in these areas. 5. Where invasive plants comprise part of the diet of native frugivores, there may be a conservation conflict between control of the invasive and maintaining populations of the native frugivore, especially where other threats such as habitat destruction have reduced populations of native fruit species. 6. Synthesis and applications. Development of functional groups of frugivore-dispersed invasive plants and dispersers will enable us to develop predictions for novel dispersal interactions at both population and community scales. Increasingly sophisticated mechanistic seed dispersal models combined with spatially explicit simulations show much promise for providing weed managers with the information they need to develop strategies for surveying, eradicating and managing plant invasions. Possible conservation conflicts mean that understanding the nature of the invasive plant-frugivore interaction is essential for determining appropriate management.
Resumo:
Self-contained Non-Equilibrium Molecular Dynamics (NEMD) simulations using Lennard-Jones potentials were performed to identify the origin and mechanisms of atomic scale interfacial behavior between sliding metals. The mixing sequence and velocity profiles were compared via MD simulations for three cases, viz.: sell-mated, similar and hard-softvcrystal pairs. The results showed shear instability, atomic scale mixing, and generation of eddies at the sliding interface. Vorticity at the interface suggests that atomic flow during sliding is similar to fluid flow under Kelvin-Helmholtz instability and this is supported by velocity profiles from the simulations. The initial step-function velocity profile spreads during sliding. However the velocity profile does not change much at later stages of the simulation and it eventually stops spreading. The steady state friction coefficient during simulation was monitored as a function of sliding velocity. Frictional behavior can be explained on the basis of plastic deformation and adiabatic effects. The mixing layer growth kinetics was also investigated.
Resumo:
By choosing appropriate microemulsion systems, hexagonal cobalt (Co) and cobalt-nickel (1:1) alloy nanoparticles have been obtained with cetyltrimethylammonium bromide as a cationic surfactant at 500 degrees C. This method thus stabilizes the hcp cobalt even at sizes (<10 nm) at which normally fcc cobalt is predicted to be stable. On annealing the hcp cobalt nanoparticles in H-2 at 700 degrees C we could transform them to fcc cobalt nanoparticles. Microscopy studies show the formation of spherical nanoparticles of hexagonal and cubic forms of cobalt and Co-Ni (1:1) alloy nanoparticles with the average size of 4, 8 and 20 nm, respectively. Electrochemical studies show that the catalytic property towards oxygen evolution is dependent on the applied voltage. At low voltage (less than 0.65 V) the Co (hexagonal) nanoparticles are superior to the alloy (Co-Ni) nanoparticles while above this voltage the alloy nanoparticles are more efficient catalysts. The nanoparticles of cobalt (hcp and fcc) and alloy (Co-Ni) nanoparticles show ferromagnetism. The saturation magnetization of Co-Ni nanoparticles is reduced compared to the bulk possibly due to surface oxidation.
Resumo:
Data-flow analysis is an integral part of any aggressive optimizing compiler. We propose a framework for improving the precision of data-flow analysis in the presence of complex control-flow. W initially perform data-flow analysis to determine those control-flow merges which cause the loss in data-flow analysis precision. The control-flow graph of the program is then restructured such that performing data-flow analysis on the resulting restructured graph gives more precise results. The proposed framework is both simple, involving the familiar notion of product automata, and also general, since it is applicable to any forward data-flow analysis. Apart from proving that our restructuring process is correct, we also show that restructuring is effective in that it necessarily leads to more optimization opportunities. Furthermore, the framework handles the trade-off between the increase in data-flow precision and the code size increase inherent in the restructuring. We show that determining an optimal restructuring is NP-hard, and propose and evaluate a greedy strategy. The framework has been implemented in the Scale research compiler, and instantiated for the specific problem of Constant Propagation. On the SPECINT 2000 benchmark suite we observe an average speedup of 4% in the running times over Wegman-Zadeck conditional constant propagation algorithm and 2% over a purely path profile guided approach.
Resumo:
Closed-form solutions are presented for blood flow in the microcirculation by taking into account the influence of slip velocity at the membrane surface. In this study, the convective inertia force is neglected in comparison with that of blood viscosity on the basis of the smallness of the Reynolds number of the flow in microcirculation. The permeability property of the blood vessel is based on the well known Starling's hypothesis [11]. The effects of slip coefficient on the velocity and pressure fields are clearly depicted.
Resumo:
A numerical analysis of the gas dynamic structure of a two-dimensional laminar boundary layer diffusion flame over a porous flat plate in a confined flow is made on the basis of the familiar boundary layer and flame sheet approximations neglecting buoyancy effects. The governing equations of aerothermochemistry with the appropriate boundary conditions are solved using the Patankar-Spalding method. The analysis predicts the flame shape, profiles of temperature, concentrations of variousspecies, and the density of the mixture across the boundary layer. In addition, it also predicts the pressure gradient in the flow direction arising from the confinement ofthe flow and the consequent velocity overshoot near the flame surface. The results of thecomputation performed for an n-pentane-air system are compared with experimental data andthe agreement is found to be satisfactory.
Resumo:
Abstract is not available.
Resumo:
Large integration of solar Photo Voltaic (PV) in distribution network has resulted in over-voltage problems. Several control techniques are developed to address over-voltage problem using Deterministic Load Flow (DLF). However, intermittent characteristics of PV generation require Probabilistic Load Flow (PLF) to introduce variability in analysis that is ignored in DLF. The traditional PLF techniques are not suitable for distribution systems and suffer from several drawbacks such as computational burden (Monte Carlo, Conventional convolution), sensitive accuracy with the complexity of system (point estimation method), requirement of necessary linearization (multi-linear simulation) and convergence problem (Gram–Charlier expansion, Cornish Fisher expansion). In this research, Latin Hypercube Sampling with Cholesky Decomposition (LHS-CD) is used to quantify the over-voltage issues with and without the voltage control algorithm in the distribution network with active generation. LHS technique is verified with a test network and real system from an Australian distribution network service provider. Accuracy and computational burden of simulated results are also compared with Monte Carlo simulations.
Resumo:
The unsteady laminar compressible three-dimensional stagnation-point boundary-layer flow with variable properties has been studied when the velocity of the incident stream, mass transfer and wall temperature vary arbitrarily with time. The second-order unsteady boundary-layer equations for all the effects have been derived by using the method of matched asymptotic expansions. Both nodal and saddle point flows as well as cold and hot wall cases have been considered. The partial differential equations governing the flow have been solved numerically using an implicit finite-difference scheme. Computations have been carried out for an accelerating stream, a decelerating stream and a fluctuating stream. The results indicate that the unsteady free stream velocity distributions, the nature of the stagnation point, the mass transfer, the wall temperature and the variation of the density-viscosity product across the boundary significantly affect the skin friction and heat transfer. The variation of the wall temperature with time strongly affects the heat transfer whereas its effect is comparatively less on skin friction. Suction increases the skin friction and heat transfer but injection does the opposite. The skin friction in the x direction due to the combined effects of first- and second-order boundary layers is less than the skin-friction in the x direction due to the first-order boundary layers for all the parameters. The overall skin friction in the z direction and heat transfer are more or less than the first-order boundary layers depending upon the values of the various parameters.
Resumo:
A new four-hole cylindrical cantilever probe is described which could be used for three-dimensional flow surveys. The probe is more compact than the usual cylindrical type allowing for closer approach to a boundary. The probe is robust and gives good reproducibility. It can be used for a wide range of pitch angle. Review of Scientific Instruments is copyrighted by The American Institute of Physics.
Resumo:
An oscillatory flow of a viscous incompressible fluid in an elastic tube of variable cross section has been investigated at low Reynolds number. The equations governing, the flow are derived under the assumption that the variation of the cross-section is slow in the axial direction for a tethered tube. The problem is then reduced to that of solving for the excess pressure from a second order ordinary differential equation with complex valued Bessel functions as the coefficients. This equation has been solved numerically for geometries of physiological interest and a comparison is made with some of the known theoretical and experimental results.