979 resultados para femtosecond phenomena


Relevância:

20.00% 20.00%

Publicador:

Resumo:

PAPER Trapping phenomena in AlGaN and InAlN barrier HEMTs with different geometries S Martin-Horcajo1, A Wang1, A Bosca1, M F Romero1, M J Tadjer1,2, A D Koehler2, T J Anderson2 and F Calle1 Published 11 February 2015 • © 2015 IOP Publishing Ltd Semiconductor Science and Technology, Volume 30, Number 3 Article PDF Figures References Citations Metrics 350 Total downloads Cited by 1 articles Export citation and abstract BibTeX RIS Turn on MathJax Share this article Article information Abstract Trapping effects were evaluated by means of pulsed measurements under different quiescent biases for GaN/AlGaN/GaN and GaN/InAlN/GaN. It was found that devices with an AlGaN barrier underwent an increase in the on-resistance, and a drain current and transconductance reduction without measurable threshold voltage change, suggesting the location of the traps in the gate-drain access region. In contrast, devices with an InAlN barrier showed a transconductance and a decrease in drain associated with a significant positive shift of threshold voltage, indicating that the traps were likely located under the gate region; as well as an on-resistance degradation probably associated with the presence of surface traps in the gate-drain access region. Furthermore, measurements of drain current transients at different ambient temperatures revealed that the activation energy of electron traps was 0.43 eV and 0.38 eV for AlGaN and InAlN barrier devices, respectively. Experimental and simulation results demonstrated the influence of device geometry on the observed trapping effects, since devices with larger gate lengths and gate-to-drain distance values exhibited less noticeable charge trapping effects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

UV and visible photoconductivity and electrical features of undoped diamond thin films grown by microwave plasma-assisted chemical vapour deposition (MP-CVD) on silicon and copper substrates are studied. The results are correlated with morphology properties analysed by atomic force microscopy (AFM) and micro-Raman. The photoconductivity presents several bands from 1.8 to 3.8 eV that are dependent on the substrate used to grow the samples in spite of some common bands observed. The J-V curve tin DC) in samples grown on Si has a rectifier behaviour (Schottky emission) in opposition to the samples grown on Cu that have no rectification (SCLC conduction). With these results we can conclude that diamond based optoelectronic devices behaviour is controlled by two kinds of structural defects localized in microcrystal and in its boundaries. A general structure model for the optoelectronic behaviour is discussed. (C) 2000 Elsevier Science S.A. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The properties of microelectrical conduction in microwave plasma assisted chemical vapour deposition (MPCVD) diamond films were investigated using an atomic force microscopy probe, giving a morphological map of the electrical conduction with a spatial resolution better than 500 nm. Also, a cathodoluminescence map with a spatial resolution of about 1 mu m was obtained, giving the possibility of correlating the defects involved in the different carrier transport phenomena. Using micro-Raman analysis several bands could be identified. It is found that the defects responsible for the cathodoluminescence (CL) blue band are responsible for the major part of the electrical conduction in diamond films, while the defects localised in < 111 > surfaces, responsible for the green CL emission, could be involved in a less conductive process. (C) 2000 Elsevier Science S.A. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Molecular simulation provides a powerful tool for connecting molecular-level processes to physical observables. However, the facility to make those connections relies upon the application and development of theoretical methods that permit appropriate descriptions of the systems or processes to be studied. In this thesis, we utilize molecular simulation to study and predict two phenomena with very different theoretical challenges, beginning with (1) lithium-ion transport behavior in polymers and following with (2) equilibrium isotope effects with relevance to position-specific and clumped isotope studies. In the case of ion transport in polymers, there is motivation to use molecular simulation to provide guidance in polymer electrolyte design, but the length and timescales relevant for ion diffusion in polymers preclude the use of direct molecular dynamics simulation to compute ion diffusivities in more than a handful of candidate systems. In the case of equilibrium isotope effects, the thermodynamic driving forces for isotopic fractionation are often fundamentally quantum mechanical in nature, and the high precision of experimental instruments demands correspondingly accurate theoretical approaches. Herein, we describe respectively coarse-graining and path-integral strategies to address outstanding questions in these two subject areas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Colloid self-assembly under external control is a new route to fabrication of advanced materials with novel microstructures and appealing functionalities. The kinetic processes of colloidal self-assembly have attracted great interests also because they are similar to many atomic level kinetic processes of materials. In the past decades, rapid technological progresses have been achieved on producing shape-anisotropic, patchy, core-shell structured particles and particles with electric/magnetic charges/dipoles, which greatly enriched the self-assembled structures. Multi-phase carrier liquids offer new route to controlling colloidal self-assembly. Therefore, heterogeneity is the essential characteristics of colloid system, while so far there still lacks a model that is able to efficiently incorporate these possible heterogeneities. This thesis is mainly devoted to development of a model and computational study on the complex colloid system through a diffuse-interface field approach (DIFA), recently developed by Wang et al. This meso-scale model is able to describe arbitrary particle shape and arbitrary charge/dipole distribution on the surface or body of particles. Within the framework of DIFA, a Gibbs-Duhem-type formula is introduced to treat Laplace pressure in multi-liquid-phase colloidal system and it obeys Young-Laplace equation. The model is thus capable to quantitatively study important capillarity related phenomena. Extensive computer simulations are performed to study the fundamental behavior of heterogeneous colloidal system. The role of Laplace pressure is revealed in determining the mechanical equilibrium of shape-anisotropic particles at fluid interfaces. In particular, it is found that the Laplace pressure plays a critical role in maintaining the stability of capillary bridges between close particles, which sheds light on a novel route to in situ firming compact but fragile colloidal microstructures via capillary bridges. Simulation results also show that competition between like-charge repulsion, dipole-dipole interaction and Brownian motion dictates the degree of aggregation of heterogeneously charged particles. Assembly and alignment of particles with magnetic dipoles under external field is studied. Finally, extended studies on the role of dipole-dipole interaction are performed for ferromagnetic and ferroelectric domain phenomena. The results reveal that the internal field generated by dipoles competes with external field to determine the dipole-domain evolution in ferroic materials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Adaptability and invisibility are hallmarks of modern terrorism, and keeping pace with its dynamic nature presents a serious challenge for societies throughout the world. Innovations in computer science have incorporated applied mathematics to develop a wide array of predictive models to support the variety of approaches to counterterrorism. Predictive models are usually designed to forecast the location of attacks. Although this may protect individual structures or locations, it does not reduce the threat—it merely changes the target. While predictive models dedicated to events or social relationships receive much attention where the mathematical and social science communities intersect, models dedicated to terrorist locations such as safe-houses (rather than their targets or training sites) are rare and possibly nonexistent. At the time of this research, there were no publically available models designed to predict locations where violent extremists are likely to reside. This research uses France as a case study to present a complex systems model that incorporates multiple quantitative, qualitative and geospatial variables that differ in terms of scale, weight, and type. Though many of these variables are recognized by specialists in security studies, there remains controversy with respect to their relative importance, degree of interaction, and interdependence. Additionally, some of the variables proposed in this research are not generally recognized as drivers, yet they warrant examination based on their potential role within a complex system. This research tested multiple regression models and determined that geographically-weighted regression analysis produced the most accurate result to accommodate non-stationary coefficient behavior, demonstrating that geographic variables are critical to understanding and predicting the phenomenon of terrorism. This dissertation presents a flexible prototypical model that can be refined and applied to other regions to inform stakeholders such as policy-makers and law enforcement in their efforts to improve national security and enhance quality-of-life.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose and demonstrate a switchable dual-wavelength erbium-doped fibre ring laser. Competition between the lasing wavelengths in erbium-doped fibre laser at room temperature is suppressed by incorporating a two-channel fibre Bragg grating (TC-FBG), which consists of two highly localized sub-gratings fabricated by femtosecond laser in single mode fibre. Wavelengths and polarization states of the lasing lines are selected by the TC-FBG. Laser output can be switched between single- and dual-wavelength operations by simply adjusting the polarization controller. Stable dual-wavelength output is verified at room temperature with a power fluctuation less than 0.27 dB, and wavelength fluctuation less than 0.004 nm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Le développement au cours des dernières décennies de lasers à fibre à verrouillage de modes permet aujourd’hui d’avoir accès à des sources fiables d’impulsions femtosecondes qui sont utilisées autant dans les laboratoires de recherche que pour des applications commerciales. Grâce à leur large bande passante ainsi qu’à leur excellente dissipation de chaleur, les fibres dopées avec des ions de terres rares ont permis l’amplification et la génération d’impulsions brèves de haute énergie avec une forte cadence. Cependant, les effets non linéaires causés par la faible taille du faisceau dans la fibre ainsi que la saturation de l’inversion de population du milieu compliquent l’utilisation d’amplificateurs fibrés pour l’obtention d’impulsions brèves dont l’énergie dépasse le millijoule. Diverses stratégies comme l’étirement des impulsions à des durées de l’ordre de la nanoseconde, l’utilisation de fibres à cristaux photoniques ayant un coeur plus large et l’amplification en parallèle ont permis de contourner ces limitations pour obtenir des impulsions de quelques millijoules ayant une durée inférieure à la picoseconde. Ce mémoire de maîtrise présente une nouvelle approche pour l’amplification d’impulsions brèves utilisant la diffusion Raman des verres de silice comme milieu de gain. Il est connu que cet effet non linéaire permet l’amplification avec une large bande passante et ce dernier est d’ailleurs couramment utilisé aujourd’hui dans les réseaux de télécommunications par fibre optique. Puisque l’adaptation des schémas d’amplification Raman existants aux impulsions brèves de haute énergie n’est pas directe, on propose plutôt un schéma consistant à transférer l’énergie d’une impulsion pompe quasi monochromatique à une impulsion signal brève étirée avec une dérive en fréquence. Afin d’évaluer le potentiel du gain Raman pour l’amplification d’impulsions brèves, ce mémoire présente un modèle analytique permettant de prédire les caractéristiques de l’impulsion amplifiée selon celles de la pompe et le milieu dans lequel elles se propagent. On trouve alors que la bande passante élevée du gain Raman des verres de silice ainsi que sa saturation inhomogène permettent l’amplification d’impulsions signal à une énergie comparable à celle de la pompe tout en conservant une largeur spectrale élevée supportant la compression à des durées très brèves. Quelques variantes du schéma d’amplification sont proposées, et leur potentiel est évalué par l’utilisation du modèle analytique ou de simulations numériques. On prédit analytiquement et numériquement l’amplification Raman d’impulsions à des énergies de quelques millijoules, dont la durée est inférieure à 150 fs et dont la puissance crête avoisine 20 GW.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this book are published results of high-tech application of computational modeling and simulation the dynamics of different flows, heat and mass transfer in different fields of science and engineering.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In solid rocket motors, the absence of combustion controllability and the large amount of financial resources involved in full-scale firing tests, increase the importance of numerical simulations in order to asses stringent mission thrust requirements and evaluate the influence of thrust chamber phenomena affecting the grain combustion. Among those phenomena, grain local defects (propellant casting inclusions and debondings), combustion heat accumulation involving pressure peaks (Friedman Curl effect), and case-insulating thermal protection material ablation affect thrust prediction in terms of not negligible deviations with respect to the nominal expected trace. Most of the recent models have proposed a simplified treatment to the problem using empirical corrective functions, with the disadvantages of not fully understanding the physical dynamics and thus of not obtaining predictive results for different configurations of solid rocket motors in a boundary conditions-varied scenario. This work is aimed to introduce different mathematical approaches to model, analyze, and predict the abovementioned phenomena, presenting a detailed physical interpretation based on existing SRMs configurations. Internal ballistics predictions are obtained with an in-house simulation software, where the adoption of a dynamic three-dimensional triangular mesh together with advanced computer graphics methods, allows the previous target to be reached. Numerical procedures are explained in detail. Simulation results are carried out and discussed based on experimental data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis analyzes the impact of heat extremes in urban and rural environments, considering processes related to severely high temperatures and unusual dryness. The first part deals with the influence of large-scale heatwave events on the local-scale urban heat island (UHI) effect. The temperatures recorded over a 20-year summer period by meteorological stations in 37 European cities are examined to evaluate the variations of UHI during heatwaves with respect to non-heatwave days. A statistical analysis reveals a negligible impact of large-scale extreme temperatures on the local daytime urban climate, while a notable exacerbation of UHI effect at night. A comparison with the UrbClim model outputs confirms the UHI strengthening during heatwave episodes, with an intensity independent of the climate zone. The investigation of the relationship between large-scale temperature anomalies and UHI highlights a smooth and continuous dependence, but with a strong variability. The lack of a threshold behavior in this relationship suggests that large-scale temperature variability can affect the local-scale UHI even in different conditions than during extreme events. The second part examines the transition from meteorological to agricultural drought, being the first stage of the drought propagation process. A multi-year reanalysis dataset involving numerous drought events over the Iberian Peninsula is considered. The behavior of different non-parametric standardized drought indices in drought detection is evaluated. A statistical approach based on run theory is employed, analyzing the main characteristics of drought propagation. The propagation from meteorological to agricultural drought events is found to develop in about 1-2 months. The duration of agricultural drought appears shorter than that of meteorological drought, but the onset is delayed. The propagation probability increases with the severity of the originating meteorological drought. A new combined agricultural drought index is developed to be a useful tool for balancing the characteristics of other adopted indices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Turbulence introduced into the intra-cluster medium (ICM) through cluster merger events transfers energy to non-thermal components (relativistic particles and magnetic fields) and can trigger the formation of diffuse synchrotron radio sources. Owing to their steep synchrotron spectral index, such diffuse sources can be better studied at low radio frequencies. In this respect, the LOw Frequency ARray (LOFAR) is revolutionizing our knowledge thanks to its unprecedented resolution and sensitivity below 200 MHz. In this Thesis we focus on the study of radio halos (RHs) by using LOFAR data. In the first part of this work we analyzed the largest-ever sample of galaxy clusters observed at radio frequencies. This includes 309 Planck clusters from the Second Data Release of the LOFAR Two Metre Sky Survey (LoTSS-DR2), which span previously unexplored ranges of mass and redshift. We detected 83 RHs, half of which being new discoveries. In 140 clusters we lack a detected RH; for this sub-sample we developed new techniques to derive upper limits to their radio powers. By comparing detections and upper limits, we carried out the first statistical analysis of populations of clusters observed at low frequencies and tested theoretical formation models. In the second part of this Thesis we focused on ultra-steep spectrum radio halos. These sources are almost undetected at GHz frequencies, but are thought to be common at low frequencies. We presented LOFAR observations of two interesting clusters hosting ultra-steep spectrum radio halos. With complementary radio and X-ray observations we constrained the properties and origin of these targets.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this thesis, the viability of the Dynamic Mode Decomposition (DMD) as a technique to analyze and model complex dynamic real-world systems is presented. This method derives, directly from data, computationally efficient reduced-order models (ROMs) which can replace too onerous or unavailable high-fidelity physics-based models. Optimizations and extensions to the standard implementation of the methodology are proposed, investigating diverse case studies related to the decoding of complex flow phenomena. The flexibility of this data-driven technique allows its application to high-fidelity fluid dynamics simulations, as well as time series of real systems observations. The resulting ROMs are tested against two tasks: (i) reduction of the storage requirements of high-fidelity simulations or observations; (ii) interpolation and extrapolation of missing data. The capabilities of DMD can also be exploited to alleviate the cost of onerous studies that require many simulations, such as uncertainty quantification analysis, especially when dealing with complex high-dimensional systems. In this context, a novel approach to address parameter variability issues when modeling systems with space and time-variant response is proposed. Specifically, DMD is merged with another model-reduction technique, namely the Polynomial Chaos Expansion, for uncertainty quantification purposes. Useful guidelines for DMD deployment result from the study, together with the demonstration of its potential to ease diagnosis and scenario analysis when complex flow processes are involved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lawsonia inermis mediated synthesis of silver nanoparticles (Ag-NPs) and its efficacy against Candida albicans, Microsporum canis, Propioniabacterium acne and Trichophyton mentagrophytes is reported. A two-step mechanism has been proposed for bioreduction and formation of an intermediate complex leading to the synthesis of capped nanoparticles was developed. In addition, antimicrobial gel for M. canis and T. mentagrophytes was also formulated. Ag-NPs were synthesized by challenging the leaft extract of L. inermis with 1 mM AgNO₃. The Ag-NPs were characterized by Ultraviolet-Visible (UV-Vis) spectrophotometer and Fourier transform infrared spectroscopy (FTIR). Transmission electron microscopy (TEM), nanoparticle tracking and analysis sytem (NTA) and zeta potential was measured to detect the size of Ag-NPs. The antimicrobial activity of Ag-NPs was evaluated by disc diffusion method against the test organisms. Thus these Ag-NPs may prove as a better candidate drug due to their biogenic nature. Moreover, Ag-NPs may be an answer to the drug-resistant microorganisms.