942 resultados para equilibrium asset pricing models with latent variables


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The study of forest re activity, in its several aspects, is essencial to understand the phenomenon and to prevent environmental public catastrophes. In this context the analysis of monthly number of res along several years is one aspect to have into account in order to better comprehend this tematic. The goal of this work is to analyze the monthly number of forest res in the neighboring districts of Aveiro and Coimbra, Portugal, through dynamic factor models for bivariate count series. We use a bayesian approach, through MCMC methods, to estimate the model parameters as well as to estimate the common latent factor to both series.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Este artículo de investigación científica y tecnológica estudia la percepción de seguridad en el uso de puentes peatonales, empleando un enfoque sustentado en dos campos principales: el microeconómico y el psicológico. El trabajo hace la estimación simultánea de un modelo híbrido de elección y variables latentes con datos de una encuesta de preferencias declaradas, encontrando mejor ajuste que un modelo mixto de referencia, lo que indica que la percepción de seguridad determina el comportamiento de los peatones cuando se enfrentan a la decisión de usar o no un puente peatonal. Se encontró que el sexo, la edad y el nivel de estudios son atributos que inciden en la percepción de seguridad. El modelo calibrado sugiere varias estrategias para aumentar el uso de puentes peatonales que son discutidas, encontrando que el uso de barreras ocasiona una pérdida de utilidad, en los peatones, que debería ser estudiada como extensión del presente trabajo.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Human relationships have long been studied by scientists from domains like sociology, psychology, literature, etc. for understanding people's desires, goals, actions and expected behaviors. In this dissertation we study inter-personal relationships as expressed in natural language text. Modeling inter-personal relationships from text finds application in general natural language understanding, as well as real-world domains such as social networks, discussion forums, intelligent virtual agents, etc. We propose that the study of relationships should incorporate not only linguistic cues in text, but also the contexts in which these cues appear. Our investigations, backed by empirical evaluation, support this thesis, and demonstrate that the task benefits from using structured models that incorporate both types of information. We present such structured models to address the task of modeling the nature of relationships between any two given characters from a narrative. To begin with, we assume that relationships are of two types: cooperative and non-cooperative. We first describe an approach to jointly infer relationships between all characters in the narrative, and demonstrate how the task of characterizing the relationship between two characters can benefit from including information about their relationships with other characters in the narrative. We next formulate the relationship-modeling problem as a sequence prediction task to acknowledge the evolving nature of human relationships, and demonstrate the need to model the history of a relationship in predicting its evolution. Thereafter, we present a data-driven method to automatically discover various types of relationships such as familial, romantic, hostile, etc. Like before, we address the task of modeling evolving relationships but don't restrict ourselves to two types of relationships. We also demonstrate the need to incorporate not only local historical but also global context while solving this problem. Lastly, we demonstrate a practical application of modeling inter-personal relationships in the domain of online educational discussion forums. Such forums offer opportunities for its users to interact and form deeper relationships. With this view, we address the task of identifying initiation of such deeper relationships between a student and the instructor. Specifically, we analyze contents of the forums to automatically suggest threads to the instructors that require their intervention. By highlighting scenarios that need direct instructor-student interactions, we alleviate the need for the instructor to manually peruse all threads of the forum and also assist students who have limited avenues for communicating with instructors. We do this by incorporating the discourse structure of the thread through latent variables that abstractly represent contents of individual posts and model the flow of information in the thread. Such latent structured models that incorporate the linguistic cues without losing their context can be helpful in other related natural language understanding tasks as well. We demonstrate this by using the model for a very different task: identifying if a stated desire has been fulfilled by the end of a story.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Para fazer face às exigências da sociedade, as organizações têm a necessidade de desenvolver esforços de modo a aumentar a sua performance, através de práticas de gestão estratégica de recursos humanos. Nesta dissertação iremos aprofundar o estudo do modelo proposto por Marr (2009) para explicar a Cultura Orientada para o Desempenho e demonstrar os efeitos que a cultura tem nos Sistemas de Gestão de Desempenho, utilizando os Modelos de Equações Estruturais, através da análise de respostas obtidas sobre 325 colaboradores de empresas portuguesas do sector público e privado. Desta análise resultou a confirmação das quatro dimensões latentes de Cultura Organizacional propostas pelo autor, através da Análise Factorial Confirmatória, revelando também a sua importância e contributos diferenciados no Sistema de Gestão de Desempenho de uma organização. De um modo geral, verificou-se que as dimensões da Cultura contribuem de forma positiva para o aumento da eficácia de um Sistema de Gestão de Desempenho, alinhado com o modelo conceptual proposto e enfatizando a importância de se estudar as dimensões de Cultura e de Sistemas de Gestão de Desempenho de forma simultânea.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study presents the development and analysis of the psychometric properties of the Deviant Behavior Variety Scale (DBVS). Participants were 861 Portuguese adolescents (54 % female), aged between 12 and 19 years old. Two alternative models were tested using Confirmatory Factor Analysis. Although both models showed good fit indexes, the two-factor model didn’t presented discriminant validity. Further results provided evidence for the factorial and the convergent validity of the single-factor structure of the DVBS, which has also shown good internal consistency. Criterion validity was evaluated through the association with related variables, such as age and school failure, as well as the scale’s ability to capture group differences, namely between genders and school retentions, and finally by comparing a sub-group of convicted adolescents with a group of non-convicted ones regarding their engagement in delinquent activities. Overall, the scale presented good psychometric properties, with results supporting that the DBVS is a valid and reliable self-reported measure to evaluate adolescents’ involvement in deviance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Inter-subject parcellation of functional Magnetic Resonance Imaging (fMRI) data based on a standard General Linear Model (GLM) and spectral clustering was recently proposed as a means to alleviate the issues associated with spatial normalization in fMRI. However, for all its appeal, a GLM-based parcellation approach introduces its own biases, in the form of a priori knowledge about the shape of Hemodynamic Response Function (HRF) and task-related signal changes, or about the subject behaviour during the task. In this paper, we introduce a data-driven version of the spectral clustering parcellation, based on Independent Component Analysis (ICA) and Partial Least Squares (PLS) instead of the GLM. First, a number of independent components are automatically selected. Seed voxels are then obtained from the associated ICA maps and we compute the PLS latent variables between the fMRI signal of the seed voxels (which covers regional variations of the HRF) and the principal components of the signal across all voxels. Finally, we parcellate all subjects data with a spectral clustering of the PLS latent variables. We present results of the application of the proposed method on both single-subject and multi-subject fMRI datasets. Preliminary experimental results, evaluated with intra-parcel variance of GLM t-values and PLS derived t-values, indicate that this data-driven approach offers improvement in terms of parcellation accuracy over GLM based techniques.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of the present study was to propose and evaluate the use of factor analysis (FA) in obtaining latent variables (factors) that represent a set of pig traits simultaneously, for use in genome-wide selection (GWS) studies. We used crosses between outbred F2 populations of Brazilian Piau X commercial pigs. Data were obtained on 345 F2 pigs, genotyped for 237 SNPs, with 41 traits. FA allowed us to obtain four biologically interpretable factors: ?weight?, ?fat?, ?loin?, and ?performance?. These factors were used as dependent variables in multiple regression models of genomic selection (Bayes A, Bayes B, RR-BLUP, and Bayesian LASSO). The use of FA is presented as an interesting alternative to select individuals for multiple variables simultaneously in GWS studies; accuracy measurements of the factors were similar to those obtained when the original traits were considered individually. The similarities between the top 10% of individuals selected by the factor, and those selected by the individual traits, were also satisfactory. Moreover, the estimated markers effects for the traits were similar to those found for the relevant factor.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Company valuation models attempt to estimate the value of a company in two stages: (1) comprising of a period of explicit analysis and (2) based on unlimited production period of cash flows obtained through a mathematical approach of perpetuity, which is the terminal value. In general, these models, whether they belong to the Dividend Discount Model (DDM), the Discount Cash Flow (DCF), or RIM (Residual Income Models) group, discount one attribute (dividends, free cash flow, or results) to a given discount rate. This discount rate, obtained in most cases by the CAPM (Capital asset pricing model) or APT (Arbitrage pricing theory) allows including in the analysis the cost of invested capital based on the risk taking of the attributes. However, one cannot ignore that the second stage of valuation that is usually 53-80% of the company value (Berkman et al., 1998) and is loaded with uncertainties. In this context, particular attention is needed to estimate the value of this portion of the company, under penalty of the assessment producing a high level of error. Mindful of this concern, this study sought to collect the perception of European and North American financial analysts on the key features of the company that they believe contribute most to its value. For this feat, we used a survey with closed answers. From the analysis of 123 valid responses using factor analysis, the authors conclude that there is great importance attached (1) to the life expectancy of the company, (2) to liquidity and operating performance, (3) to innovation and ability to allocate resources to R&D, and (4) to management capacity and capital structure, in determining the value of a company or business in long term. These results contribute to our belief that we can formulate a model for valuating companies and businesses where the results to be obtained in the evaluations are as close as possible to those found in the stock market

Relevância:

100.00% 100.00%

Publicador:

Resumo:

With progressive climate change, the preservation of biodiversity is becoming increasingly important. Only if the gene pool is large enough and requirements of species are diverse, there will be species that can adapt to the changing circumstances. To maintain biodiversity, we must understand the consequences of the various strategies. Mathematical models of population dynamics could provide prognoses. However, a model that would reproduce and explain the mechanisms behind the diversity of species that we observe experimentally and in nature is still needed. A combination of theoretical models with detailed experiments is needed to test biological processes in models and compare predictions with outcomes in reality. In this thesis, several food webs are modeled and analyzed. Among others, models are formulated of laboratory experiments performed in the Zoological Institute of the University of Cologne. Numerical data of the simulations is in good agreement with the real experimental results. Via numerical simulations it can be demonstrated that few assumptions are necessary to reproduce in a model the sustained oscillations of the population size that experiments show. However, analysis indicates that species "thrown together by chance" are not very likely to survive together over long periods. Even larger food nets do not show significantly different outcomes and prove how extraordinary and complicated natural diversity is. In order to produce such a coexistence of randomly selected species—as the experiment does—models require additional information about biological processes or restrictions on the assumptions. Another explanation for the observed coexistence is a slow extinction that takes longer than the observation time. Simulated species survive a comparable period of time before they die out eventually. Interestingly, it can be stated that the same models allow the survival of several species in equilibrium and thus do not follow the so-called competitive exclusion principle. This state of equilibrium is more fragile, however, to changes in nutrient supply than the oscillating coexistence. Overall, the studies show, that having a diverse system means that population numbers are probably oscillating, and on the other hand oscillating population numbers stabilize a food web both against demographic noise as well as against changes of the habitat. Model predictions can certainly not be converted at their face value into policies for real ecosystems. But the stabilizing character of fluctuations should be considered in the regulations of animal populations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Maintenance of transport infrastructure assets is widely advocated as the key in minimizing current and future costs of the transportation network. While effective maintenance decisions are often a result of engineering skills and practical knowledge, efficient decisions must also account for the net result over an asset's life-cycle. One essential aspect in the long term perspective of transport infrastructure maintenance is to proactively estimate maintenance needs. In dealing with immediate maintenance actions, support tools that can prioritize potential maintenance candidates are important to obtain an efficient maintenance strategy. This dissertation consists of five individual research papers presenting a microdata analysis approach to transport infrastructure maintenance. Microdata analysis is a multidisciplinary field in which large quantities of data is collected, analyzed, and interpreted to improve decision-making. Increased access to transport infrastructure data enables a deeper understanding of causal effects and a possibility to make predictions of future outcomes. The microdata analysis approach covers the complete process from data collection to actual decisions and is therefore well suited for the task of improving efficiency in transport infrastructure maintenance. Statistical modeling was the selected analysis method in this dissertation and provided solutions to the different problems presented in each of the five papers. In Paper I, a time-to-event model was used to estimate remaining road pavement lifetimes in Sweden. In Paper II, an extension of the model in Paper I assessed the impact of latent variables on road lifetimes; displaying the sections in a road network that are weaker due to e.g. subsoil conditions or undetected heavy traffic. The study in Paper III incorporated a probabilistic parametric distribution as a representation of road lifetimes into an equation for the marginal cost of road wear. Differentiated road wear marginal costs for heavy and light vehicles are an important information basis for decisions regarding vehicle miles traveled (VMT) taxation policies. In Paper IV, a distribution based clustering method was used to distinguish between road segments that are deteriorating and road segments that have a stationary road condition. Within railway networks, temporary speed restrictions are often imposed because of maintenance and must be addressed in order to keep punctuality. The study in Paper V evaluated the empirical effect on running time of speed restrictions on a Norwegian railway line using a generalized linear mixed model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study focuses on multiple linear regression models relating six climate indices (temperature humidity THI, environmental stress ESI, equivalent temperature index ETI, heat load HLI, modified HLI (HLI new), and respiratory rate predictor RRP) with three main components of cow’s milk (yield, fat, and protein) for cows in Iran. The least absolute shrinkage selection operator (LASSO) and the Akaike information criterion (AIC) techniques are applied to select the best model for milk predictands with the smallest number of climate predictors. Uncertainty estimation is employed by applying bootstrapping through resampling. Cross validation is used to avoid over-fitting. Climatic parameters are calculated from the NASA-MERRA global atmospheric reanalysis. Milk data for the months from April to September, 2002 to 2010 are used. The best linear regression models are found in spring between milk yield as the predictand and THI, ESI, ETI, HLI, and RRP as predictors with p-value < 0.001 and R2 (0.50, 0.49) respectively. In summer, milk yield with independent variables of THI, ETI, and ESI show the highest relation (p-value < 0.001) with R2 (0.69). For fat and protein the results are only marginal. This method is suggested for the impact studies of climate variability/change on agriculture and food science fields when short-time series or data with large uncertainty are available.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

El concepto de actividad física es concebido de diferentes formas. Mostrando que existen varios factores que afectan de manera directa e indirecta la percepción que los sujetos construyen entorno a él, generando así una aproximación a diferentes definiciones de la actividad física desde varias perspectivas y dimensiones, donde predomina una noción netamente biológica. Este estudio pretende analizar, como desde las clases sociales se concibe la actividad física en sus conceptos y prácticas considerando los modelos de determinantes y determinación social para la salud. Con fin de comprender como los autores de la literatura científica conciben la actividad física y la relación con las clases sociales, desde una perspectiva teórica de los determinantes sociales de la salud y la teoría de la determinación social, se realizó una revisión documental y análisis de contenido de los conceptos y prácticas de la actividad física que se han considerado en los últimos 10 años. Para ello se seleccionaron las bases de datos PubMed y BVS (Biblioteca Virtual de Salud) por sus énfasis en publicaciones de salud mundialmente. Mostrando que la actividad física es concebida dominantemente desde una perspectiva biológica que ejerce una mirada reduccionista. Las relaciones entre actividad física y las clases sociales están claramente establecidas, sin embargo, estas relaciones pueden discrepar teniendo en cuenta el concepto de clase social, el contexto y la orientación de los autores y las poblaciones objetos de estudio. Obteniendo como resultado que los estudios documentados, revisados y analizados muestran una clara tendencia al modelo de determinantes; no obstante, algunos estudios en sus análisis se orientan hacia el modelo de determinación social. En cuanto al concepto de clases sociales los autores consideran una combinación de factores culturales y económicos sin atreverse a adoptar un concepto específico.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The growing interest for constellation of small, less expensive satellites is bringing space junk and traffic management to the attention of space community. At the same time, the continuous quest for more efficient propulsion systems put the spotlight on electric (low thrust) propulsion as an appealing solution for collision avoidance. Starting with an overview of the current techniques for conjunction assessment and avoidance, we then highlight the possible problems when a low thrust propulsion is used. The need for accurate propagation model shows up from the conducted simulations. Thus, aiming at propagation models with low computational burden, we study the available models from the literature and propose an analytical alternative to improve propagation accuracy. The model is then tested in the particular case of a tangential maneuver. Results show that the proposed solution significantly improve on state of the art methods and is a good candidate to be used in collision avoidance operations. For instance to propagate satellite uncertainty or optimizing avoidance maneuver when conjunction occurs within few (3-4) orbits from measurements time.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, we explore and demonstrate the potential for modeling and classification using quantile-based distributions, which are random variables defined by their quantile function. In the first part we formalize a least squares estimation framework for the class of linear quantile functions, leading to unbiased and asymptotically normal estimators. Among the distributions with a linear quantile function, we focus on the flattened generalized logistic distribution (fgld), which offers a wide range of distributional shapes. A novel naïve-Bayes classifier is proposed that utilizes the fgld estimated via least squares, and through simulations and applications, we demonstrate its competitiveness against state-of-the-art alternatives. In the second part we consider the Bayesian estimation of quantile-based distributions. We introduce a factor model with independent latent variables, which are distributed according to the fgld. Similar to the independent factor analysis model, this approach accommodates flexible factor distributions while using fewer parameters. The model is presented within a Bayesian framework, an MCMC algorithm for its estimation is developed, and its effectiveness is illustrated with data coming from the European Social Survey. The third part focuses on depth functions, which extend the concept of quantiles to multivariate data by imposing a center-outward ordering in the multivariate space. We investigate the recently introduced integrated rank-weighted (IRW) depth function, which is based on the distribution of random spherical projections of the multivariate data. This depth function proves to be computationally efficient and to increase its flexibility we propose different methods to explicitly model the projected univariate distributions. Its usefulness is shown in classification tasks: the maximum depth classifier based on the IRW depth is proven to be asymptotically optimal under certain conditions, and classifiers based on the IRW depth are shown to perform well in simulated and real data experiments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

X-ray fluorescence (XRF) is a fast, low-cost, nondestructive, and truly multielement analytical technique. The objectives of this study are to quantify the amount of Na(+) and K(+) in samples of table salt (refined, marine, and light) and to compare three different methodologies of quantification using XRF. A fundamental parameter method revealed difficulties in quantifying accurately lighter elements (Z < 22). A univariate methodology based on peak area calibration is an attractive alternative, even though additional steps of data manipulation might consume some time. Quantifications were performed with good correlations for both Na (r = 0.974) and K (r = 0.992). A partial least-squares (PLS) regression method with five latent variables was very fast. Na(+) quantifications provided calibration errors lower than 16% and a correlation of 0.995. Of great concern was the observation of high Na(+) levels in low-sodium salts. The presented application may be performed in a fast and multielement fashion, in accordance with Green Chemistry specifications.