Factor analysis applied to genome prediction for high-dimensional phenotypes in pigs.


Autoria(s): TEIXEIRA, F. R. F.; NASCIMENTO, M.; NASCIMENTO, A. C. C.; SILVA, F. F. e; CRUZ, C. D.; AZEVEDO, C. F.; PAIXÃO, D. M.; BARROSO, L. M. A.; VERARDO, L. L.; RESENDE, M. D. V. de; GUIMARÃES, S. E. F.; LOPES, P. S.
Contribuinte(s)

F. R. F. Teixeira, UFV; M. Nascimento, UFV; A. C. C. Nascimento, UFV; F. F. e Silva, UFV; C. D. Cruz, UFV; C. F. Azevedo, UFV; D. M. Paixão, UFV; L. M. A. Barroso, UFV; L. L. Verardo, UFV; MARCOS DEON VILELA DE RESENDE, CNPF; S. E. F. Guimarães, UFV; P. S. Lopes, UFV.

Data(s)

22/06/2016

22/06/2016

2016

21/06/2016

Resumo

The aim of the present study was to propose and evaluate the use of factor analysis (FA) in obtaining latent variables (factors) that represent a set of pig traits simultaneously, for use in genome-wide selection (GWS) studies. We used crosses between outbred F2 populations of Brazilian Piau X commercial pigs. Data were obtained on 345 F2 pigs, genotyped for 237 SNPs, with 41 traits. FA allowed us to obtain four biologically interpretable factors: ?weight?, ?fat?, ?loin?, and ?performance?. These factors were used as dependent variables in multiple regression models of genomic selection (Bayes A, Bayes B, RR-BLUP, and Bayesian LASSO). The use of FA is presented as an interesting alternative to select individuals for multiple variables simultaneously in GWS studies; accuracy measurements of the factors were similar to those obtained when the original traits were considered individually. The similarities between the top 10% of individuals selected by the factor, and those selected by the individual traits, were also satisfactory. Moreover, the estimated markers effects for the traits were similar to those found for the relevant factor.

2016

Identificador

55090

http://www.alice.cnptia.embrapa.br/handle/doc/1047516

http://dx.doi.org/10.4238/gmr.15028231

Idioma(s)

en

Publicador

Genetics and Molecular Research, v. 15, n. 2, 2016. 10 p.

Relação

Embrapa Florestas - Artigo em periódico indexado (ALICE)

Palavras-Chave #Genome enabled prediction #SNP effects #Melhoramento genético animal #Análise multivariada #Estatística #Seleção genética #Animal breeding #Multivariate analysis
Tipo

Artigo em periódico indexado (ALICE)