992 resultados para direct operational calculus
Resumo:
A closed-loop control technique based on monitoring phase current risetime for switched reluctance (SR) motors without direct rotor-position sensors has been studied and implemented successfully. In this technique the variation in incremental phase inductance in a SR motor is used to detect rotor position. A control circuit for current-waveform-based rotor position detection has been implemented using hard-wire digital circuits. Torque-speed and system-efficiency characteristics resulting from the application of the method to a 4-kW, four-phase SR motor with an IGBT drive are presented.
Resumo:
This paper presents direct growth of horizontally aligned carbon nanotubes (CNTs) between two predefined various inter-spacing up to tens of microns of electrodes (pads) and its use as CNT field-effect transistors (CNT-FETs). The catalytic metals were prepared, consisting of iron (Fe), aluminum (Al) and platinum (Pt) triple layers, on the thermal silicon oxide substrate (Pt/Al/Fe/SiO2). Scanning electron microscopy measurements of CNT-FETs from the as-grown samples showed that over 80% of the nanotubes are grown across the catalytic electrodes. Moreover, the number of CNTs across the catalytic electrodes is roughly controllable by adjusting the growth condition. The Al, as the upper layer on Fe electrode, not only plays a role as a barrier to prevent vertical growth but also serves as a porous medium that helps in forming smaller nano-sized Fe particles which would be necessary for lateral growth of CNTs. Back-gate field effect transistors were demonstrated with the laterally aligned CNTs. The on/off ratios in all the measured devices are lower than 100 due to the drain leakage current. ©2010 IEEE.
Resumo:
Large sections of many types of engineering construction can be considered to constitute a two-dimensional periodic structure, with examples ranging from an orthogonally stiffened shell to a honeycomb sandwich panel. In this paper, a method is presented for computing the boundary (or edge) impedance of a semi-infinite two-dimensional periodic structure, a quantity which is referred to as the direct field boundary impedance matrix. This terminology arises from the fact that none of the waves generated at the boundary (the direct field) are reflected back to the boundary in a semi-infinite system. The direct field impedance matrix can be used to calculate elastic wave transmission coefficients, and also to calculate the coupling loss factors (CLFs), which are required by the statistical energy analysis (SEA) approach to predicting high frequency vibration levels in built-up systems. The calculation of the relevant CLFs enables a two-dimensional periodic region of a structure to be modeled very efficiently as a single subsystem within SEA, and also within related methods, such as a recently developed hybrid approach, which couples the finite element method with SEA. The analysis is illustrated by various numerical examples involving stiffened plate structures.
Resumo:
We have grown epitaxially orientation-controlled monoclinic VO2 nanowires without employing catalysts by a vapor-phase transport process. Electron microscopy results reveal that single crystalline VO2 nanowires having a [100] growth direction grow laterally on the basal c plane and out of the basal r and a planes of sapphire, exhibiting triangular and rectangular cross sections, respectively. In addition, we have directly observed the structural phase transition of single crystalline VO2 nanowires between the monoclinic and tetragonal phases which exhibit insulating and metallic properties, respectively, and clearly analyzed their corresponding relationships using in situ transmission electron microscopy.
Resumo:
Moving ecosystem modeling from research to applications and operations has direct management relevance and will be integral to achieving the water quality and living resource goals of the 2010 Chesapeake Bay Executive Order. Yet despite decades of ecosystem modeling efforts of linking climate to water quality, plankton and fish, ecological models are rarely taken to the operational phase. In an effort to promote operational ecosystem modeling and ecological forecasting in Chesapeake Bay, a meeting was convened on this topic at the 2010 Chesapeake Modeling Symposium (May, 10-11). These presentations show that tremendous progress has been made over the last five years toward the development of operational ecological forecasting models, and that efforts in Chesapeake Bay are leading the way nationally. Ecological forecasts predict the impacts of chemical, biological, and physical changes on ecosystems, ecosystem components, and people. They have great potential to educate and inform not only ecosystem management, but also the outlook and opinion of the general public, for whom we manage coastal ecosystems. In the context of the Chesapeake Bay Executive Order, ecological forecasting can be used to identify favorable restoration sites, predict which sites and species will be viable under various climate scenarios, and predict the impact of a restoration project on water quality.
Resumo:
We present a growth analysis model that combines large amounts of environmental data with limited amounts of biological data and apply it to Corbicula japonica. The model uses the maximum-likelihood method with the Akaike information criterion, which provides an objective criterion for model selection. An adequate distribution for describing a single cohort is selected from available probability density functions, which are expressed by location and scale parameters. Daily relative increase rates of the location parameter are expressed by a multivariate logistic function with environmental factors for each day and categorical variables indicating animal ages as independent variables. Daily relative increase rates of the scale parameter are expressed by an equation describing the relationship with the daily relative increase rate of the location parameter. Corbicula japonica grows to a modal shell length of 0.7 mm during the first year in Lake Abashiri. Compared with the attain-able maximum size of about 30 mm, the growth of juveniles is extremely slow because their growth is less susceptible to environmental factors until the second winter. The extremely slow growth in Lake Abashiri could be a geographical genetic variation within C. japonica.