967 resultados para cytoplasmic inheritance
Resumo:
Resumen: La propiedad rural en la Argentina ha sufrido un proceso de pulverización ocasionado fundamentalmente por dos fenómenos: la venta de tierras y la división forzosa hereditaria. La excesiva subdivisión de la propiedad generada por las leyes sucesorias modernas ha sido no solo constatada por estudios recientes sino también, más atrás en el tiempo, por el propio autor de esas disposiciones legales, es decir, por Vélez Sársfield. Acercándonos a los ciento cuenta años de la vigencia del Código Civil argentino, se observa en la realidad que la aplicación del sistema sucesorio inalterado por este gran lapso ha conducido a una paulatina desaparición de la mediana propiedad rural y, como contrapartida, a la marcada aparición del minifundio y del latifundio. El autor menciona algunas reformas al Código Civil y algunos institutos creados con posterioridad a su sanción, como la unidad económica, que desafortunadamente no han detenido el proceso de atomización de la propiedad agraria y propone, en cambio, otros que podrían mejorar la situación presente, entre ellos, el aumento de la porción disponible por testamento cuya tendencia se advierte en el derecho comparado. La familia agropecuaria requiere de una propiedad estable con dimensiones suficientes para su sustento y para continuar poblando nuestro inmenso territorio.
Resumo:
We generalise and extend the work of Iñarra and Laruelle (2011) by studying two person symmetric evolutionary games with two strategies, a heterogenous population with two possible types of individuals and incomplete information. Comparing such games with their classic homogeneous version vith complete information found in the literature, we show that for the class of anti-coordination games the only evolutionarily stable strategy vanishes. Instead, we find infinite neutrally stable strategies. We also model the evolutionary process using two different replicator dynamics setups, each with a different inheritance rule, and we show that both lead to the same results with respect to stability.
Resumo:
Unidos por motivos históricos, é inegável que tendo sido colônia portuguesa, o Brasil herdou valores e características do Parlamento português. Assim, esta pesquisa bibliográfica e documental visa apontar alguns aspectos relevantes para o entendimento da identidade política brasileira e das atuais feições do nosso parlamento. Por meio da comparação da trajetória histórica dos Parlamentos desses países, as particularidades institucionais atuais, assim como seus sistemas legislativos, tornou-se possível a identificação de determinados elementos de nossa cultura política. Esta significando o cotidiano, os comportamentos e ações de atores sociais, os rituais e as tradições parlamentares. Percebeu-se, ademais, que algumas práticas político-parlamentares brasileiras estão fortemente marcadas por heranças legislativas portuguesas, tais como a tradição do envio da Mensagem Presidencial no início de cada Sessão Legislativa do Congresso Nacional brasileiro, bem como o ato de abrir as sessões legislativas ordinárias e extraordinárias nos Plenários das duas Casas com menção a Deus, demonstrando a permanência de valores religiosos, fruto da colonização por um país fervorosamente católico como Portugal.
Resumo:
This study examines binding of α- and β-D-glucose in their equilibrium mixture to the glucose transporter (GLUT1) in human erythrocyte membrane preparations by an ^1H NMR method, the transferred NOE (TRNOE). This method is shown theoretically and experimentally to be a sensitive probe of weak ligand-macromolecule interactions. The TRNOEs observed are shown to arise solely from glucose binding to GLUT1. Sites at both membrane faces contribute to the TRNOEs. Binding curves obtained are consistent with a homogeneous class of sugar sites, with an apparent KD which varies (from ~30 mM to ~70 mM for both anomers) depending on the membrane preparation examined. Preparations with a higher proportion of the cytoplasmic membrane face exposed to bulk solution yield higher apparent KKDs. The glucose transport inhibitor cytochalasin B essentially eliminates the TRNOE. Nonlinearity was found in the dependence on sugar concentration of the apparent inhibition constant for cytochalasin B reversal of the TRNOE observed in the α anomer (and probably the β anomer); such nonlinearity implies the existence of ternary complexes of sugar, inhibitor and transporter. The inhibition results furthermore imply the presence of a class of relatively high-affinity (KD < 2mM) sugar sites specific for the α anomer which do not contribute to NMR-observable binding. The presence of two classes of sugar-sensitive cytochalasin B sites is also indicated. These results are compared with predictions of the alternating conformer model of glucose transport. Variation of apparent KD in the NMR-observable sites, the formation of ternary complexes and the presence of an anomer-specific site are shown to be inconsistent with this model. An alternate model is developed which reconciles these results with the known transport behavior of GLUT1. In this model, the transporter possesses (at minimum) three classes of sugar sites: (i) transport sites, which are alternately exposed to the cytoplasmic or the extracellular compartment, but never to both simultaneously, (ii) a class of sites (probably relatively low-affinity) which are confined to one compartment, and (iii) the high-affinity α anomer-specific sites, which are confined to the cytoplasmic compartment.
Resumo:
Tesis leida en la Universidad de Aberdeen. 178 p.
Resumo:
The sea urchin embryonic skeleton, or spicule, is deposited by mesenchymal progeny of four precursor cells, the micromeres, which are determined to the skeletogenic pathway by a process known as cytoplasmic localization. A gene encoding one of the major products of the skeletogenic mesenchyme, a prominent 50 kD protein of the spicule matrix, has been characterized in detail. cDNA clones were first isolated by antibody screening of a phage expression library, followed by isolation of homologous genomic clones. The gene, known as SM50, is single copy in the sea urchin genome, is divided into two exons of 213 and 1682 bp, and is expressed only in skeletogenic cells. Transcripts are first detectable at the 120 cell stage, shortly after the segregation of the skeletogenic precursors from the rest of the embryo. The SM50 open reading frame begins within the first exon, is 450 amino acids in length, and contains a loosely repeated 13 amino acid motif rich in acidic residues which accounts for 45% of the protein and which is possibly involved in interaction with the mineral phase of the spicule.
The important cis-acting regions of the SM50 gene necessary for proper regulation of expression were identified by gene transfer experiments. A 562 bp promoter fragment, containing 438 bp of 5' promoter sequence and 124 bp of the SM50 first exon (including the SM50 initiation codon), was both necessary and sufficient to direct high levels of expression of the bacterial chloramphenicol acetyltransferase (CAT) reporter gene specifically in the skeletogenic cells. Removal of promoter sequences between positions -2200 and -438, and of transcribed regions downstream of +124 (including the SM50 intron), had no effect on the spatial or transcriptional activity of the transgenes.
Regulatory proteins that interact with the SM50 promoter were identified by the gel retardation assay, using bulk embryo mesenchyme blastula stage nuclear proteins. Five protein binding sites were identified and mapped to various degrees of resolution. Two sites are homologous, may be enhancer elements, and at least one is required for expression. Two additional sites are also present in the promoter of the aboral ectoderm specific cytoskeletal actin gene CyIIIa; one of these is a CCAA T element, the other a putative repressor element. The fifth site overlaps the binding site of the putative repressor and may function as a positive regulator by interfering with binding of the repressor. All of the proteins are detectable in nuclear extracts prepared from 64 cell stage embryos, a stage just before expression of SM50 is initiated, as well as from blastula and gastrula stage; the putative enhancer binding protein may be maternal as well.
Resumo:
The ubiquitin-dependent proteolytic pathway plays an important role in a broad array of cellular processes, inducting cell cycle control and transcription. Biochemical analysis of the ubiquitination of Sic1, the B-type cyclin-dependent kinase (CDK) inhibitor in budding yeast helped to define a ubiquitin ligase complex named SCFcdc4 (for Skp1, Cdc53/cullin, F-box protein). We found that besides Sic1, the CDK inhibitor Far1 and the replication initiation protein Cdc6 are also substrates of SCFcdc4 in vitro. A common feature in the ubiquitination of the cell cycle SCFcdc4 substrates is that they must be phosphorylated by the major cell cycle CDK, Cdc28. Gcn4, a transcription activator involved in the general control of amino acid biosynthesis, is rapidly degraded in an SCFcdc4-dependent manner in vivo. We have focused on this substrate to investigate the generality of the SCFcdc4 pathway. Through biochemical fractionations, we found that the Srb10 CDK phosphorylates Gcn4 and thereby marks it for recognition by SCFcdc4 ubiquitin ligase. Srb10 is a physiological regulator of Gcn4 stability because both phosphorylation and turnover of Gcn4 are diminished in srb10 mutants. Furthermore, we found that at least two different CDKs, Pho85 and Srb10, conspire to promote the rapid degradation of Gcn4 in vivo. The multistress response transcriptional regulator Msn2 is also a substrate for Srb10 and is hyperphosphorylated in an Srb10-dependent manner upon heat stress-induced translocation into the nucleus. Whereas Msn2 is cytoplasmic in resting wild type cells, its nuclear exclusion is partially compromised in srb10 mutant cells. Srb10 has been shown to repress a subset of genes in vivo, and has been proposed to inhibit transcription via phosphorylation of the C-terminal domain of RNA polymerase II. Our results suggest a general theme that Srb10 represses the transcription of specific genes by directly antagonizing the transcriptional activators.
Resumo:
Integrins alpha(M)beta(2) plays important role on leukocytes, such as adhesion, migration, phagocytosis, and apoptosis. It was hypothesized that homomeric associations of integrin subunits provide a driving force for integrins activation, and simultaneously inducing the formation of integrins clusters. However, experimental reports on homomeric associations between integrin subunits are still controversial. Here, we proved the homomeric associations of the isolated Mac-1 subunits in living cells using three-channel fluorescence resonance energy transfer (FRET) microscopy and FRET spectra methods. We found that the extent of homomeric associations between beta(2) subunits is higher than alpha(M) subunits. Furthermore, FRET imaging indicated that the extent of homomeric associations of the Mac-1 subunits is higher along the plasma membrane than in the cytoplasm. Finally, we suggested that homomeric associations of the transmernbrane domains or/and cytoplasmic domains may provide the driving force for the formation of constitutive homomeric associations between alpha(M) or beta(2) subunits. (c) 2006 Elsevier Inc. All rights reserved.
Resumo:
Mitochondria can remodel their membranes by fusing or dividing. These processes are required for the proper development and viability of multicellular organisms. At the cellular level, fusion is important for mitochondrial Ca2+ homeostasis, mitochondrial DNA maintenance, mitochondrial membrane potential, and respiration. Mitochondrial division, which is better known as fission, is important for apoptosis, mitophagy, and for the proper allocation of mitochondria to daughter cells during cellular division.
The functions of proteins involved in fission have been best characterized in the yeast model organism Sarccharomyces cerevisiae. Mitochondrial fission in mammals has some similarities. In both systems, a cytosolic dynamin-like protein, called Dnm1 in yeast and Drp1 in mammals, must be recruited to the mitochondrial surface and polymerized to promote membrane division. Recruitment of yeast Dnm1 requires only one mitochondrial outer membrane protein, named Fis1. Fis1 is conserved in mammals, but its importance for Drp1 recruitment is minor. In mammals, three other receptor proteins—Mff, MiD49, and MiD51—play a major role in recruiting Drp1 to mitochondria. Why mammals require three additional receptors, and whether they function together or separately, are fundamental questions for understanding the mechanism of mitochondrial fission in mammals.
We have determined that Mff, MiD49, or MiD51 can function independently of one another to recruit Drp1 to mitochondria. Fis1 plays a minor role in Drp1 recruitment, suggesting that the emergence of these additional receptors has replaced the system used by yeast. Additionally, we found that Fis1/Mff and the MiDs regulate Drp1 activity differentially. Fis1 and Mff promote constitutive mitochondrial fission, whereas the MiDs activate recruited Drp1 only during loss of respiration.
To better understand the function of the MiDs, we have determined the atomic structure of the cytoplasmic domain of MiD51, and performed a structure-function analysis of MiD49 based on its homology to MiD51. MiD51 adopts a nucleotidyl transferase fold, and binds ADP as a co-factor that is essential for its function. Both MiDs contain a loop segment that is not present in other nucleotidyl transferase proteins, and this loop is used to interact with Drp1 and to recruit it to mitochondria.
Resumo:
The ability to interface with and program cellular function remains a challenging research frontier in biotechnology. Although the emerging field of synthetic biology has recently generated a variety of gene-regulatory strategies based on synthetic RNA molecules, few strategies exist through which to control such regulatory effects in response to specific exogenous or endogenous molecular signals. Here, we present the development of an engineered RNA-based device platform to detect and act on endogenous protein signals, linking these signals to the regulation of genes and thus cellular function.
We describe efforts to develop an RNA-based device framework for regulating endogenous genes in human cells. Previously developed RNA control devices have demonstrated programmable ligand-responsive genetic regulation in diverse cell types, and we attempted to adapt this class of cis-acting control elements to function in trans. We divided the device into two strands that reconstitute activity upon hybridization. Device function was optimized using an in vivo model system, and we found that device sequence is not as flexible as previously reported. After verifying the in vitro activity of our optimized design, we attempted to establish gene regulation in a human cell line using additional elements to direct device stability, structure, and localization. The significant limitations of our platform prevented endogenous gene regulation.
We next describe the development of a protein-responsive RNA-based regulatory platform. Employing various design strategies, we demonstrated functional devices that both up- and downregulate gene expression in response to a heterologous protein in a human cell line. The activity of our platform exceeded that of a similar, small-molecule-responsive platform. We demonstrated the ability of our devices to respond to both cytoplasmic- and nuclear-localized protein, providing insight into the mechanism of action and distinguishing our platform from previously described devices with more restrictive ligand localization requirements. Finally, we demonstrated the versatility of our device platform by developing a regulatory device that responds to an endogenous signaling protein.
The foundational tool we present here possesses unique advantages over previously described RNA-based gene-regulatory platforms. This genetically encoded technology may find future applications in the development of more effective diagnostic tools and targeted molecular therapy strategies.
Resumo:
O objetivo do presente trabalho é comparar, do ponto de vista elétrico, a membrana do neurônio ganglionar com a da célula de neuroblastoma, analisando os efeitos das cargas fixas sobre o potencial elétrico nas superfícies da bicamada lipídica e também sobre o comportamento do perfil de potencial através da membrana, considerando as condiçõesfísico-químicas do estado de repouso e do estado de potencial de ação. As condições para a ocorrência dos referidos estados foram baseadas em valores numéricos de parâmetros elétricos e químicos, característicos dessas células, obtidos na literatura. O neurônio ganglionar exemplifica um neurônio sadio, e a célula de neuroblastoma, que é uma célula tumoral, exemplifica um neurônio patológico, alterado por esta condição. O neuroblastoma é um tumor que se origina das células da crista neural (neuroblastos), que é uma estrutura embrionária que dá origem a muitas partes do sistema nervoso, podendo surgir em diversos locais do organismo, desde a região do crânio até a área mais inferior da coluna. O modelo adotado para simular a membrana de neurônio inclui: (a) as distribuições espaciais de cargas elétricas fixas no glicocálix e na rede de proteínas citoplasmáticas; (b) as distribuições de cargas na solução eletrolítica dos meios externo e interno; e (c) as cargas superficiais da bicamada lipídica. Os resultados que obtivemos mostraram que, nos estados de repouso e de ação, os potenciais superficiais da bicamada interno (ÁSbc) e externo (ÁSgb) da célula de neuroblastoma não sofrem alteração mensurável, quando a densidade de carga na superfície interna (QSbc) torna-se 50 vezes mais negativa, tanto para uma densidade de carga na superfície externa da bicamada nula (QSgb = 0), como para um valor de QSgb 6= 0. Porém, no estado de repouso, uma leve queda em ÁSbc do neur^onio ganglionar pode ser observada com este nível de variação de carga, sendo que ÁSgb do neurônio ganglionar é mais negativo quando QSgb = 1=1100 e/A2. No estado de ação, para QSgb = 0, o aumento da negatividade de QSbc não provoca alteração detectável de ÁSbc e ÁSgb para os dois neurônios. Quando consideramos QSgb = 1=1100 e/A2, ÁSgb do neurônio ganglionar se torna mais negativo, não se observando variações detectáveis nos potenciais superficiais da célula de neuroblastoma. Tanto no repouso quanto no estado de ação, ÁSgb das duas células não sofre variação sensível com o aumento da negatividade da carga fixa distribuída espacialmente no citoplasma. Já a ÁSbc sofre uma queda gradativa nos dois tipos celulares; porém, no estado de ação, esta queda é mais rápida. Descobrimos diferenças importantes nos perfis de potencial das duas células, especialmente na região do glicocálix.
Resumo:
The ability to reproduce is a defining characteristic of all living organisms. During reproduction, the integrity of genetic material transferred from one generation to the next is of utmost importance. Organisms have diverse strategies to ensure the fidelity of genomic information inherited between generations of individuals. In sexually reproducing animals, the piRNA pathway is an RNA-interference (RNAi) mechanism that protects the genomes of germ cells from the replication of ‘selfish’ genetic sequences called transposable elements (TE). When left unabated, the replication of TE sequences can cause gene disruption, double-stranded DNA breaks, and germ cell death that results in sterility of the organism. In Drosophila, the piRNA pathway is divided into a cytoplasmic and nuclear branch that involves the functions of three Piwi-clade Argonaute proteins—Piwi, Aubergine (Aub) and Argonaute-3 (Ago3)—which bind piwi-interacting RNA (piRNA) to form the effector complexes that represses deleterious TE sequences.
The work presented in this thesis examines the function and regulation of Piwi proteins in Drosophila germ cells. Chapter 1 presents an introduction to piRNA biogenesis and to the essential roles occupied by each Piwi protein in the repression of TE. We discuss the architecture and function of germ granules as the cellular compartments where much of the piRNA pathway operates. In Chapter 2, we present how Piwi in the nucleus co-transcriptionally targets genomic loci expressing TE sequences to direct the deposition of repressive chromatin marks. Chapter 3 examines the cytoplasmic function of the piRNA pathway, where we find that the protein Krimper coordinates Aub and Ago3 in the piRNA ping-pong pathway to adaptively target and destroy TE transcripts. Chapter 4 explores how interactions of Piwis with associated proteins are modulated by arginine methylation modifications. Lastly, in Chapter 5 I present evidence that the cytoplasmic branch of the piRNA pathway can potentially ‘cross-talk’ with the nuclear branch to transfer sequence information to better target and co-transcriptionally silence the genomic loci coding active TE sequences. Overall, the work presented in this thesis constitutes a part of the first steps in understanding the molecular mechanisms that protect germ cells from invasion by TE sequences.
Resumo:
This article discusses problems of modelling the seasonal succession of algal species in lakes and reservoirs, and the adaptive selection of certain groups of algae in response to changes in the inputs and relative concentrations of nutrients and other environmental variables. A new generation of quantitative models is being developed which attempts to translate some important biological properties of species (survival, variation, inheritance, reproductive rates and population growth) into predictions about the survival of the fittest, where ”fitness” is measured or estimated in thermodynamic terms. The concept of ”exergy” and its calculation is explored to examine maximal exergy as a measure of fitness in ecosystems, and its use for calculating changes in species composition by means of structural dynamic models. These models accomodate short-term changes in parameters that affect the adaptive responses (species selection) of algae.
Resumo:
We studied the phagocytic-like capacity of human CD34+ stromal cells/telocytes (TCs). For this, we examined segments of the colon after injection of India ink to help surgeons localize lesions identified at endoscopy. Our results demonstrate that CD34+ TCs have endocytic properties (phagocytic-like TCs: phTCs), with the capacity to uptake and store India ink particles. phTCs conserve the characteristics of TCs (long, thin, bipolar or multipolar, moniliform cytoplasmic processes/telopodes, with linear distribution of the pigment) and maintain their typical distribution. Likewise, they are easily distinguished from pigment-loaded macrophages (CD68+ macrophages, with oval morphology and coarse granules of pigment clustered in their cytoplasm). A few c-kit/CD117+ interstitial cells of Cajal also incorporate pigment and may conserve the phagocytic-like property of their probable TC precursors. CD34+ stromal cells in other locations (skin and periodontal tissues) also have the phagocytic-like capacity to uptake and store pigments (hemosiderin, some components of dental amalgam and melanin). This suggests a function of TCs in general, which may be related to the transfer of macromolecules in these cells. Our ultrastructural observation of melanin-storing stromal cells with characteristics of TCs (telopodes with dichotomous branching pattern) favours this possibility. In conclusion, intestinal TCs have a phagocytic-like property, a function that may be generalized to TCs in other locations. This function (the ability to internalize small particles), together with the capacity of these cells to release extracellular vesicles with macromolecules, could close the cellular bidirectional cooperative circle of informative exchange and intercellular interactions.
Resumo:
Familial hypercholesterolemia (FH) is a common autosomal codominant disease with a frequency of 1:500 individuals in its heterozygous form. The genetic basis of FH is most commonly mutations within the LDLR gene. Assessing the pathogenicity of LDLR variants is particularly important to give a patient a definitive diagnosis of FH. Current studies of LDLR activity ex vivo are based on the analysis of I-125-labeled lipoproteins (reference method) or fluorescent-labelled LDL. The main purpose of this study was to compare the effectiveness of these two methods to assess LDLR functionality in order to validate a functional assay to analyse LDLR mutations. LDLR activity of different variants has been studied by flow cytometry using FITC-labelled LDL and compared with studies performed previously with I-125-labeled lipoproteins. Flow cytometry results are in full agreement with the data obtained by the I-125 methodology. Additionally confocal microscopy allowed the assignment of different class mutation to the variants assayed. Use of fluorescence yielded similar results than I-125-labeled lipoproteins concerning LDLR activity determination, and also allows class mutation classification. The use of FITC-labelled LDL is easier in handling and disposal, cheaper than radioactivity and can be routinely performed by any group doing LDLR functional validations.