838 resultados para computer-based instrumentation
Resumo:
Uninhabited aerial vehicles (UAVs) are a cutting-edge technology that is at the forefront of aviation/aerospace research and development worldwide. Many consider their current military and defence applications as just a token of their enormous potential. Unlocking and fully exploiting this potential will see UAVs in a multitude of civilian applications and routinely operating alongside piloted aircraft. The key to realising the full potential of UAVs lies in addressing a host of regulatory, public relation, and technological challenges never encountered be- fore. Aircraft collision avoidance is considered to be one of the most important issues to be addressed, given its safety critical nature. The collision avoidance problem can be roughly organised into three areas: 1) Sense; 2) Detect; and 3) Avoid. Sensing is concerned with obtaining accurate and reliable information about other aircraft in the air; detection involves identifying potential collision threats based on available information; avoidance deals with the formulation and execution of appropriate manoeuvres to maintain safe separation. This thesis tackles the detection aspect of collision avoidance, via the development of a target detection algorithm that is capable of real-time operation onboard a UAV platform. One of the key challenges of the detection problem is the need to provide early warning. This translates to detecting potential threats whilst they are still far away, when their presence is likely to be obscured and hidden by noise. Another important consideration is the choice of sensors to capture target information, which has implications for the design and practical implementation of the detection algorithm. The main contributions of the thesis are: 1) the proposal of a dim target detection algorithm combining image morphology and hidden Markov model (HMM) filtering approaches; 2) the novel use of relative entropy rate (RER) concepts for HMM filter design; 3) the characterisation of algorithm detection performance based on simulated data as well as real in-flight target image data; and 4) the demonstration of the proposed algorithm's capacity for real-time target detection. We also consider the extension of HMM filtering techniques and the application of RER concepts for target heading angle estimation. In this thesis we propose a computer-vision based detection solution, due to the commercial-off-the-shelf (COTS) availability of camera hardware and the hardware's relatively low cost, power, and size requirements. The proposed target detection algorithm adopts a two-stage processing paradigm that begins with an image enhancement pre-processing stage followed by a track-before-detect (TBD) temporal processing stage that has been shown to be effective in dim target detection. We compare the performance of two candidate morphological filters for the image pre-processing stage, and propose a multiple hidden Markov model (MHMM) filter for the TBD temporal processing stage. The role of the morphological pre-processing stage is to exploit the spatial features of potential collision threats, while the MHMM filter serves to exploit the temporal characteristics or dynamics. The problem of optimising our proposed MHMM filter has been examined in detail. Our investigation has produced a novel design process for the MHMM filter that exploits information theory and entropy related concepts. The filter design process is posed as a mini-max optimisation problem based on a joint RER cost criterion. We provide proof that this joint RER cost criterion provides a bound on the conditional mean estimate (CME) performance of our MHMM filter, and this in turn establishes a strong theoretical basis connecting our filter design process to filter performance. Through this connection we can intelligently compare and optimise candidate filter models at the design stage, rather than having to resort to time consuming Monte Carlo simulations to gauge the relative performance of candidate designs. Moreover, the underlying entropy concepts are not constrained to any particular model type. This suggests that the RER concepts established here may be generalised to provide a useful design criterion for multiple model filtering approaches outside the class of HMM filters. In this thesis we also evaluate the performance of our proposed target detection algorithm under realistic operation conditions, and give consideration to the practical deployment of the detection algorithm onboard a UAV platform. Two fixed-wing UAVs were engaged to recreate various collision-course scenarios to capture highly realistic vision (from an onboard camera perspective) of the moments leading up to a collision. Based on this collected data, our proposed detection approach was able to detect targets out to distances ranging from about 400m to 900m. These distances, (with some assumptions about closing speeds and aircraft trajectories) translate to an advanced warning ahead of impact that approaches the 12.5 second response time recommended for human pilots. Furthermore, readily available graphic processing unit (GPU) based hardware is exploited for its parallel computing capabilities to demonstrate the practical feasibility of the proposed target detection algorithm. A prototype hardware-in- the-loop system has been found to be capable of achieving data processing rates sufficient for real-time operation. There is also scope for further improvement in performance through code optimisations. Overall, our proposed image-based target detection algorithm offers UAVs a cost-effective real-time target detection capability that is a step forward in ad- dressing the collision avoidance issue that is currently one of the most significant obstacles preventing widespread civilian applications of uninhabited aircraft. We also highlight that the algorithm development process has led to the discovery of a powerful multiple HMM filtering approach and a novel RER-based multiple filter design process. The utility of our multiple HMM filtering approach and RER concepts, however, extend beyond the target detection problem. This is demonstrated by our application of HMM filters and RER concepts to a heading angle estimation problem.
Resumo:
A browser is a convenient way to access resources located remotely on computer networks. Security in browsers has become a crucial issue for users who use them for sensitive applications without knowledge ofthe hazards. This research utilises a structure approach to analyse and propose enhancements to browser security. Standard evaluation for computer products is important as it helps users to ensure that the product they use is appropriate for their needs. Security in browsers, therefore, has been evaluated using the Common Criteria. The outcome of this was a security requirements profile which attempts to formalise the security needs of browsers. The information collected during the research was used to produce a prototype model for a secure browser program. Modifications to the Lynx browser were made to demonstrate the proposed enhancements.
Resumo:
Forensic imaging has been facing scalability challenges for some time. As disk capacity growth continues to outpace storage IO bandwidth, the demands placed on storage and time are ever increasing. Data reduction and de-duplication technologies are now commonplace in the Enterprise space, and are potentially applicable to forensic acquisition. Using the new AFF4 forensic file format we employ a hash based compression scheme to leverage an existing corpus of images, reducing both acquisition time and storage requirements. This paper additionally describes some of the recent evolution in the AFF4 file format making the efficient implementation of hash based imaging a reality.
Resumo:
The Georgia Institute of Technology is currently performing research that will result in the development and deployment of three instrumentation packages that allow for automated capture of personal travel-related data for a given time period (up to 10 days). These three packages include: A handheld electronic travel diary (ETD) with Global Positioning System (GPS) capabilities to capture trip information for all modes of travel; A comprehensive electronic travel monitoring system (CETMS), which includes an ETD, a rugged laptop computer, a GPS receiver and antenna, and an onboard engine monitoring system, to capture all trip and vehicle information; and a passive GPS receiver, antenna, and data logger to capture vehicle trips only.
Resumo:
This thesis addresses the problem of detecting and describing the same scene points in different wide-angle images taken by the same camera at different viewpoints. This is a core competency of many vision-based localisation tasks including visual odometry and visual place recognition. Wide-angle cameras have a large field of view that can exceed a full hemisphere, and the images they produce contain severe radial distortion. When compared to traditional narrow field of view perspective cameras, more accurate estimates of camera egomotion can be found using the images obtained with wide-angle cameras. The ability to accurately estimate camera egomotion is a fundamental primitive of visual odometry, and this is one of the reasons for the increased popularity in the use of wide-angle cameras for this task. Their large field of view also enables them to capture images of the same regions in a scene taken at very different viewpoints, and this makes them suited for visual place recognition. However, the ability to estimate the camera egomotion and recognise the same scene in two different images is dependent on the ability to reliably detect and describe the same scene points, or ‘keypoints’, in the images. Most algorithms used for this purpose are designed almost exclusively for perspective images. Applying algorithms designed for perspective images directly to wide-angle images is problematic as no account is made for the image distortion. The primary contribution of this thesis is the development of two novel keypoint detectors, and a method of keypoint description, designed for wide-angle images. Both reformulate the Scale- Invariant Feature Transform (SIFT) as an image processing operation on the sphere. As the image captured by any central projection wide-angle camera can be mapped to the sphere, applying these variants to an image on the sphere enables keypoints to be detected in a manner that is invariant to image distortion. Each of the variants is required to find the scale-space representation of an image on the sphere, and they differ in the approaches they used to do this. Extensive experiments using real and synthetically generated wide-angle images are used to validate the two new keypoint detectors and the method of keypoint description. The best of these two new keypoint detectors is applied to vision based localisation tasks including visual odometry and visual place recognition using outdoor wide-angle image sequences. As part of this work, the effect of keypoint coordinate selection on the accuracy of egomotion estimates using the Direct Linear Transform (DLT) is investigated, and a simple weighting scheme is proposed which attempts to account for the uncertainty of keypoint positions during detection. A word reliability metric is also developed for use within a visual ‘bag of words’ approach to place recognition.
Resumo:
Machine vision represents a particularly attractive solution for sensing and detecting potential collision-course targets due to the relatively low cost, size, weight, and power requirements of the sensors involved. This paper describes the development of detection algorithms and the evaluation of a real-time flight ready hardware implementation of a vision-based collision detection system suitable for fixed-wing small/medium size UAS. In particular, this paper demonstrates the use of Hidden Markov filter to track and estimate the elevation (β) and bearing (α) of the target, compares several candidate graphic processing hardware choices, and proposes an image based visual servoing approach to achieve collision avoidance
Resumo:
Increasingly, software is no longer developed as a single system, but rather as a smart combination of so-called software services. Each of these provides an independent, specific and relatively small piece of functionality, which is typically accessible through the Internet from internal or external service providers. To the best of our knowledge, there are no standards or models that describe the sourcing process of these software based services (SBS). We identify the sourcing requirements for SBS and associate the key characteristics of SBS (with the sourcing requirements introduced). Furthermore, we investigate the sourcing of SBS with the related works in the field of classical procurement, business process outsourcing, and information systems sourcing. Based on the analysis, we conclude that the direct adoption of these approaches for SBS is not feasible and new approaches are required for sourcing SBS.
Resumo:
Increasingly, software is no longer developed as a single system, but rather as a smart combination of so-called software services. Each of these provides an independent, specific and relatively small piece of functionality, which is typically accessible through the Internet from internal or external service providers. There are no standards or models that describe the sourcing process of these software based services (SBS). The authors identify the sourcing requirements for SBS and associate the key characteristics of SBS (with the sourcing requirements introduced). Furthermore, this paper investigates the sourcing of SBS with the related works in the field of classical procurement, business process outsourcing, and information systems sourcing. Based on the analysis, the authors conclude that the direct adoption of these approaches for SBS is not feasible and new approaches are required for sourcing SBS.
Resumo:
Wireless network technologies, such as IEEE 802.11 based wireless local area networks (WLANs), have been adopted in wireless networked control systems (WNCS) for real-time applications. Distributed real-time control requires satisfaction of (soft) real-time performance from the underlying networks for delivery of real-time traffic. However, IEEE 802.11 networks are not designed for WNCS applications. They neither inherently provide quality-of-service (QoS) support, nor explicitly consider the characteristics of the real-time traffic on networked control systems (NCS), i.e., periodic round-trip traffic. Therefore, the adoption of 802.11 networks in real-time WNCSs causes challenging problems for network design and performance analysis. Theoretical methodologies are yet to be developed for computing the best achievable WNCS network performance under the constraints of real-time control requirements. Focusing on IEEE 802.11 distributed coordination function (DCF) based WNCSs, this paper analyses several important NCS network performance indices, such as throughput capacity, round trip time and packet loss ratio under the periodic round trip traffic pattern, a unique feature of typical NCSs. Considering periodic round trip traffic, an analytical model based on Markov chain theory is developed for deriving these performance indices under a critical real-time traffic condition, at which the real-time performance constraints are marginally satisfied. Case studies are also carried out to validate the theoretical development.
Resumo:
Streaming SIMD Extensions (SSE) is a unique feature embedded in the Pentium III class of microprocessors. By fully exploiting SSE, parallel algorithms can be implemented on a standard personal computer and a theoretical speedup of four can be achieved. In this paper, we demonstrate the implementation of a parallel LU matrix decomposition algorithm for solving power systems network equations with SSE and discuss advantages and disadvantages of this approach.