917 resultados para citrate potassium


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although various models have been proposed to explain the origin of manganese nodules (see Goldberg and Arrhenius), two major hypotheses have received extensive attention. One concept suggests that manganese nodules form as the result of interaction between submarine volcanic products and sea water. The common association of manganese nodules with volcanic materials constitutes the main evidence for this theory. The second theory involves a direct inorganic precipitation of manganese from sea water. Goldberg and Arrhenius view this process as the oxidation of divalent manganese to tetravalent manganese by oxygen under the catalytic action of particulate iron hydroxides. Manganese accumulation by the Goldberg and Arrhenius theory would be a relatively slow and comparatively steady process, whereas Bonatti and Nayudu believe manganese nodule formation takes place subsequent to the eruption of submarine volcanoes by the acidic leaching of lava.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ne, Ar, Kr, Xe, and K2O were measured in representative samples of holocrystalline basalt from DSDP Hole 504B. No hiatus in inert gas abundance is recognized at the base of the "oxic" alteration zone and the extent rather than the nature of alteration appears to determine these abundances. When the inert gas abundances are separately plotted against K2O, two distinct trends of loss emerge, one for alteration involving K-gain, the other for K-loss. Apparent whole-rock K-Ar ages are anomalous in the upper 50 m of basement, and below 300 m sub-basement. In the intervening zone of basement, celadonization adds sufficient potassium and eliminates enough "primary" 40Ar early in the history of the basalts for "excess" 40Ar to become subordinate to radiogenic 40Ar in basalts showing potassium enrichment greater than 0.2%. Stratigraphically correct K-Ar ages are obtained, therefore, from K-enriched basalts of the oxic alteration zone.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The human ether-a-go-go-related gene (hERG) encodes the voltage-gated K+ channel, hERG (Kv11.1). This channel passes the rapidly-activating delayed rectifier K+ current (IKr), which is important for cardiac repolarization. A reduction in IKr due to loss-of-function mutations or drug interactions causes long QT syndrome (LQTS), which can lead to cardiac arrhythmias and sudden cardiac death. The density of hERG channels in the plasma membrane is a key determinant of normal physiological function, and is balanced by trafficking to and from the cell surface. Many LQTS-associated hERG mutations result in a trafficking deficiency of otherwise functional channels. Thus, elucidating mechanisms of hERG regulation at the plasma membrane is useful for the prevention and treatment of LQTS. We previously demonstrated that M3 muscarinic receptor activation increases mature hERG expression through a Gq protein-dependent protein kinase C (PKC) pathway. In addition to conventional Gq protein-coupling, M3 receptors recruit β-arrestins upon agonist binding. Traditionally known for their role in receptor desensitization and internalization, β-arrestins also act as adaptor proteins to facilitate G protein-independent signaling. In the present work, I investigated the exclusive effect of β-arrestin signaling on hERG expression by utilizing an arrestin-biased M3 designer receptor (M3D-arr) exclusively activated by clozapine-N-oxide (CNO). By expressing M3D-arr in hERG-HEK cells and treating with CNO under various conditions, I found that M3D-arr activation increased mature hERG expression and current. Within this paradigm, M3D-arr recruited β-arrestin to the plasma membrane, and promoted the PI3K-dependent activation of Akt. I further found that the activated Akt acted through phosphatidylinositol 3-phosphate 5-kinase (PIKfyve) and Rab11 to facilitate endosomal recycling of hERG channels to the plasma membrane.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Compared to the use of traditional fossil fuels (coal, oil, natural gas), combustion of biomass and waste fuels has several environmental and economic advantages for heat and power generation. However, biomass and waste fuels might contain halogens (Cl, Br, F), alkali metals (Na, K) and heavy metals (Zn, Pb), which may cause harmful emissions and corrosion problems. Hightemperature corrosion occurs typically on furnace waterwalls and superheaters. The corrosion of the boiler tube materials limits the increase of thermal efficiency of steam boilers and leads to costly shutdowns and repairs. In recent years, some concerns have been raised about halogen (Cl, Br, and F)-related hightemperature corrosion in biomass- and waste-fired boilers. Chlorine-related high-temperature corrosion has been studied extensively. The presence of alkali chlorides in the deposits is believed to play a major role in the corrosion observed in biomass and waste fired boilers. However, there is much less information found in literature on the corrosion effect of bromine and fluorine. According to the literature, bromine is only assumed to play a role similar to chlorine; the role of fluorine is even less understood. In this work, a series of bubbling fluidized bed (BFB) bench-scale tests were carried out to characterize the formation and sulfation behaviors of KCl and KBr in BFB combustion conditions. Furthermore, a series of laboratory tests were carried out to investigate the hightemperature corrosion behaviors of three different superheater steels (10CrMo9-10, AISI 347 and Sanicro 28) exposed to potassium halides in ambient air and wet air (containing 30% H2O). The influence of H2O and O2 on the high-temperature corrosion of steels both with and without a salt (KCl) in three gas atmospheres (2% H2O-30% O2-N2, 2% H2O-2% O2-N2 and 30% H2O-2% O2-N2) was also studied. From the bench-scale BFB combustion tests, it was found that HBr has a clearly higher affinity for the available K forming KBr than HCl forming KCl. The tests also indicated that KCl has a higher tendency for sulfation than KBr. From the laboratory corrosion tests in ambient air (also called “dry air” in Paper III and Paper IV), it was found that at relatively low temperatures (≤ 550 °C) the corrosivity of KBr and KF are similar to KCl. At 600 °C, KF showed much stronger corrosivity than KBr and KCl, especially for 10CrMo9-10 and AISI 347. When exposed to KBr or KF, 10CrMo9-10 was durable at least up to 450 °C, while AISI 347 and Sanicro 28 were durable at least up to 550 °C. From the laboratory corrosion tests in wet air (30% H2O), no obvious effect of water vapor was detected at 450 °C. At 550 °C, the influence of water vapor became significant in some cases, but the trend was not consistent. At 550 °C, after exposure with KBr, 10CrMo9-10 suffered from extreme corrosion; after exposure with KF and KCl, the corrosion was less severe, but still high. At 550 °C, local deep pitting corrosion occurred on AISI 347 and Sanicro 28 after exposure with KF. Some formation of K2CrO4 was observed in the oxide layer. At 550 °C, AISI 347 and Sanicro 28 suffered from low corrosion (oxide layer thickness of < 10 μm) after exposure with KBr and KCl. No formation of K2CrO4 was observed. Internal oxidation occurred in the cases of AISI 347 with KBr and KCl. From the laboratory corrosion tests in three different gas atmospheres (2% H2O-30% O2-N2, 2% H2O-2% O2-N2 and 30% H2O-2% O2-N2), it was found that in tests with no salt, no corrosion occurred on AISI 347 and Sanicro 28 up to 600 °C in both the “O2-rich” (2% H2O-30% O2-N2) and “H2O-rich” (30% H2O-2% O2-N2) gas atmospheres; only 10CrMo9-10 showed increased corrosion with increasing temperature. For 10CrMo9-10 in the “O2-rich” atmosphere, the presence of KCl significantly increased the corrosion compared to the “no salt” cases. For 10CrMo9-10 in the “H2O-rich” atmosphere, the presence or absence of KCl did not show any big influence on corrosion. The formation of K2CrO4 was observed only in the case with the “O2-rich” atmosphere. Considering both the results from the BFB tests and the laboratory corrosion tests, if fuels containing Br were to be combusted, the corrosion damage of superheaters would be expected to be higher than if the fuels contain only Cl. Information generated from these studies can be used to help the boiler manufacturers in selecting materials for the most demanding combustion systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In contrast to animals and lower plant species, sperm cells of flowering plants are non-motile and are transported to the female gametes via the pollen tube, i.e. the male gametophyte. Upon arrival at the female gametophyte two sperm cells are discharged into the receptive synergid cell to execute double fertilization. The first players involved in inter-gametophyte signaling to attract pollen tubes and to arrest their growth have been recently identified. In contrast the physiological mechanisms leading to pollen tube burst and thus sperm discharge remained elusive. Here, we describe the role of polymorphic defensin-like cysteine-rich proteins ZmES1-4 (Zea mays embryo sac) from maize, leading to pollen tube growth arrest, burst, and explosive sperm release. ZmES1-4 genes are exclusively expressed in the cells of the female gametophyte. ZmES4-GFP fusion proteins accumulate in vesicles at the secretory zone of mature synergid cells and are released during the fertilization process. Using RNAi knock-down and synthetic ZmES4 proteins, we found that ZmES4 induces pollen tube burst in a species-preferential manner. Pollen tube plasma membrane depolarization, which occurs immediately after ZmES4 application, as well as channel blocker experiments point to a role of K(+)-influx in the pollen tube rupture mechanism. Finally, we discovered the intrinsic rectifying K(+) channel KZM1 as a direct target of ZmES4. Following ZmES4 application, KZM1 opens at physiological membrane potentials and closes after wash-out. In conclusion, we suggest that vesicles containing ZmES4 are released from the synergid cells upon male-female gametophyte signaling. Subsequent interaction between ZmES4 and KZM1 results in channel opening and K(+) influx. We further suggest that K(+) influx leads to water uptake and culminates in osmotic tube burst. The species-preferential activity of polymorphic ZmES4 indicates that the mechanism described represents a pre-zygotic hybridization barrier and may be a component of reproductive isolation in plants.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The efficient generation of second-harmonic light and squeezed light requires non-linear crystals that have low absorption at the fundamental and harmonic wavelengths. In this work the photo-thermal self-phase modulation technique is exploited to measure the absorption coefficient of periodically poled potassium titanyl phosphate (PPKTP) at 1,550 nm and 775 nm. The measurement results are (84 +/- 40) ppm/cm and (127 +/- 24) ppm/cm, respectively. We conclude that the performance of state-of-the-art frequency doubling and squeezed light generation in PPKTP is not limited by absorption.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A poluição das águas por metais, principalmente os metais pesados, vem chamando a atenção no mundo, pois estes poluentes aquáticos representam um risco em potencial, devido ao seu caráter acumulativo. Entre os metais, o arsênio recebe destaque pelo seu potencial tóxico. O arsênio inorgânico ocorre na natureza em quatro estados de oxidação: As5+, As3+, As0 e As3- . O estado de oxidação do arsênio tem um papel importante no seu comportamento e toxicidade nos sistemas aquáticos. Pelo fato do arsênio ser extremamente perigoso e nocivo para o meio ambiente, novos métodos analíticos de especiação química no meio ambiente têm sido publicados. Neste estudo foi otimizado e validado um método para realizar a especiação química de arsênio inorgânico presente em amostras de água coletadas nos meses de julho e outubro de 2010 no estuário da Lagoa dos Patos (RS, Brasil), como parte das atividades do Programa de Monitoramento Ambiental do Porto do Rio Grande-RS. Foi usada a técnica de espectrometria de absorção atômica com geração de hidretos e injeção em fluxo (FI-HG AAS), podendo ser quantificadas espécies de As3+ e As5+ nas amostras de água estuarina. A concentração do arsênio trivalente inorgânico foi determinada, após adição de solução tampão citrato de sódio (0,4 mol L-1 ; pH = 6,0). A concentração de arsênio inorgânico total foi determinada, após uma etapa de pré-redução da espécie pentavalente para a forma trivalente usando uma mistura de iodeto de potássio, ácido ascórbico em meio ácido clorídrico concentrado. A concentração de arsênio pentavalente foi calculada pela diferença das concentrações de arsênio inorgânico total e trivalente. A interpretação dos resultados gerados pelo método proposto usado ao analisar amostras de águas coletadas no estuário da Lagoa dos Patos foi feita pela análise dos componentes principais. Os dados tratados estatisticamente revelaram uma interação significativa neste estudo entre o arsênio, o material em suspensão (MS) e o NH4 + na superfície da coluna d’água no período da primavera.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The immune system is able to produce antibodies, which have the capacity to recognize and to bind to foreign molecules or pathogenic organisms. Currently, there are a diversity of diseases that can be treated with antibodies, like immunoglobulins G (IgG). Thereby, the development of cost-efficient processes for their extraction and purification is an area of main interest in biotechnology. Aqueous biphasic systems (ABS) have been investigated for this purpose, once they allow the reduction of costs and the number of steps involved in the process, when compared with conventional methods. Nevertheless, typical ABS have not showed to be selective, resulting in low purification factors and yields. In this context, the addition of ionic liquids (ILs) as adjuvants can be a viable and potential alternative to tailor the selectivity of these systems. In this work, ABS composed of polyethylene glycol (PEG) of different molecular weight, and a biodegradable salt (potassium citrate) using ILs as adjuvants (5 wt%), were studied for the extraction and purification of IgG from a rabbit source. Initially, it was tested the extraction time, the effect on the molecular weight of PEG in a buffer solution of K3C6H5O7/C6H8O7 at pH≈7, and the effect of pH (59) on the yield (YIgG) and extraction efficiency (EEIgG%) of IgG. The best results regarding EEIgG% were achieved with a centrifugation step at 1000 rpm, during 10 min, in order to promote the separation of phases followed by 120 min of equilibrium. This procedure was then applied to the remaining experiments. The results obtained in the study of PEGs with different molecular weights, revealed a high affinity of IgG for the PEG-rich phase, and particularly for PEGs of lower molecular weight (EEIgG% of 96 % with PEG 400). On the other hand, the variation of pH in the buffer solution did not show a significant effect on the EEIgG%. Finally, it was evaluated the influence of the addition of different ILs (5% wt) on the IgG extraction in ABS composed of PEG 400 at pH≈7. In these studies, it was possible to obtain EEIgG% of 100% with the ILs composed of the anions [TOS]-, [CH3CO2]-and Cl-, although the obtained YIgG% were lower than 40%. On the other hand, the ILs composed of the anions Br-, as well as of the cation [C10mim]+, although not leading to EEIgG% of 100%, provide an increase in the YIgG%. ABS composed of PEG, a biodegradable organic salt and ILs as adjuvants, revealed to be an alternative and promising method to purify IgG. However, additional studies are still required in order to reduce the loss of IgG.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The main objective of the present thesis consists on the development of an analytical preconcentration technology for the concomitant extraction and concentration of human pollution tracers from wastewater streams. Due to the outstanding tunable properties of ionic liquids (ILs), aqueous biphasic systems (ABS) composed of ILs can provide higher and more selective extraction efficiencies for a wide range of compounds, being thus a promising alternative to the volatile and hazardous organic solvents (VOCs) typically used. For that purpose, IL-based ABS were employed and adequately characterized as an one-step extraction and concentration technique. The applicability of IL-based ABS was verified by their potential to completely extract and concentrate two representative pharmaceutical pollution tracers, namely caffeine (CAF) and carbamazepine (CBZ), from wastewaters. The low concentration of these persistent pollutants (usually found in μg·dm-3 and ng·dm-3 levels, respectively) by conventional analytical equipment does not permit a proper detection and quantification without a previous concentration step. Preconcentration methods commonly applied are costly, timeconsuming, with irregular recoveries and make use of VOCs. In this work, the ABS composed of the IL tetrabutylammonium chloride ([N4444]Cl) and the salt potassium citrate (K3[C6H5O7]) was investigated while demonstrating to be able to completely extract and concentrate CAF and CBZ, in a single-step, overcoming thus the detection limit of the applied analytical equipment. Finally, the hydrotropic effect responsible for the ability of IL-based ABS to extract and concentrate a wide variety of compounds was also investigated. It was shown that the IL rules the hydrotropic mechanism in the solubility of CAF in aqueous solutions, with an increase in solubility up to 4-fold. Moreover, the proper selection of the IL enables the design of the system that leads to a more enhanced solubility of a given solute in the IL-rich phase, while allowing a better extraction and concentration. IL-based ABS are a promising and more versatile technique, and are straightforwardly envisaged as selective extraction and concentration routes of target micropollutants from wastewater matrices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neutron activation analysis and gamma-ray spectroscopy were used to determine the quantity of potassium and sodium in an ash sample of Tabebuia sp bombarded with thermal neutrons. These techniques, widely applied in nuclear physics, can be used in the context of wood science as an alternative for the usual physical chemistry methods applied in this area. The quantity of K and Na in an 8.60 +/- 0.10 mg of ash was determined as being 1.3 +/- 0.3 mg and 11.0 +/- 1.8 mu g, respectively. The ratio of Tabebuia sp converted into ash was also determined as 0.758 +/- 0.004%.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Potassium permanganate is a chemical compound widely used in aquaculture for the control and removal of parasites, and in the prevention of diseases caused by bacteria and fungi. However, this compound can be toxic to fish, being a strong oxidant. Moreover, there is no consistent information in the literature about its toxicity to non-target organisms. The purpose of this study was to evaluate the acute toxicity (LC50;96h) of potassium permanganate for tilapia, Oreochromis niloticus, and to determine its toxic effects on nontarget organisms using ecotoxicological assays performed with the microcrustacean Ceriodaphnia dubia and with the green microalgae Pseudokirchneriella subcapitata. The results showed that the concentration of 1.81 mg L-1 of potassium permanganate caused acute toxic effect in tilapia fingerlings. The ecotoxicological assays demonstrated that concentrations above 0.12 mg L-1 can cause chronic toxic effects on non-target organisms, indicating possible deleterious effects on the food chain of the aquatic ecosystem that may receive the discharge of effluents released by fish cultures treated with this chemotherapy. All toxic concentrations determined in this study were below those recommended in the literature for the use of this chemotherapy in fish cultures, demonstrating that this type of therapy should be more carefully considered in order to avoid damage to the treated fish and to the environment. (C) 2011 Elsevier B.V. All rights reserved.