970 resultados para chemical reaction system
Resumo:
A combined procedure for separating Lu, Hf, Sm, Nd, and rare earth elements (REEs) from a single sample digest is presented. The procedure consists of the following five steps: (1) sample dissolution via sodium peroxide sintering; (2) separation of the high field strength elements from the REEs and other matrix elements by a HF-free anion-exchange column procedure; (3) purification of Hf on a cation-exchange resin; (4) separation of REEs from other matrix elements by cation exchange; (5) Lu, Sm, and Nd separation from the other REEs by reversed-phase ion chromatography. Analytical reproducibilities of Sm-Nd and Lu-Hf isotope systematics are demonstrated for standard solutions and international rock reference materials. Results show overall good reproducibilities for Sm-Nd systematics independent of the rock type analyzed. For the Lu-Hf systematics, the reproducibility of the parent/daughter ratio is much better for JB-1 (basalt) than for two analyzed felsic crustal rocks (DR-N and an Archaean granitoid). It is demonstrated that this poorer reproducibility of the Lu/Hf ratio is truly caused by sample heterogeneity; thus, results are geologically reasonable.
Resumo:
The 101 residue protein early pregnancy factor (EPF), also known as human chaperonin 10, was synthesized from four functionalized, but unprotected, peptide segments by a sequential thioether ligation strategy. The approach exploits the differential reactivity of a peptide-NHCH2CH2SH thiolate with XCH2CO-peptides, where X = Cl or I/Br. Initial model studies with short functionalized (but unprotected) peptides showed a significantly faster reaction of a peptide-NHCH2CH2SH thiolate with a BrCH2CO-peptide than with a CICH2CO-peptide, where thiolate displacement of the halide leads to chemoselective formation of a thioether surrogate for the Gly-Gly peptide bond. This rate difference was used as the basis of a novel sequential ligation approach to the synthesis of large polypeptide chains. Thus, ligation of a model bifunctional N-alpha-chloroacetyl, C-terminal thiolated peptide with a second N-alpha-bromoacetyl peptide demonstrated chemoselective bromide displacement by the thiol group. Further investigations showed that the relatively unreactive N-alpha-chloroacetyl peptides could be activated by halide exchange using saturated KI solutions to yield the highly reactive No-iodoacetyl peptides. These findings were used to formulate a sequential thioether ligation strategy for the synthesis of EPF, a 101 amino acid protein containing three Gly-Gly sites approximately equidistantly spaced within the peptide chain. Four peptide segments or cassettes comprising the EPF protein sequence (BrAc-[EPF 78-101] 12, ClAc-[EPF 58-75]-[NHCH2CH2SH] 13, ClAc-[EPF 30-55]-[NHCH2CH2SH] 14, and Ac-[EPF 1-27]-[NHCH2CH2SH] 15) of EPF were synthesized in high yield and purity using Boc SPPS chemistry. In the stepwise sequential ligation strategy, reaction of peptides 12 and 13 was followed by conversion of the N-terminal chloroacetyl functional group to an iodoacetyl, thus activating the product peptide for further ligation with peptide 14. The process of ligation followed by iodoacetyl activation was repeated to yield an analogue of EPF (EPF psi(CH2S)(28-29,56-57,76-77)) 19 in 19% overall yield.
Resumo:
Carbon gasification with steam to produce H-2 and CO is an important reaction widely used in industry for hydrogen generation. Although the literature is vast, the. mechanism for the formation of H-2 is still unclear. In particular, little has, been done to investigate the potential of molecular orbital theory to distinguish different mechanism possibilities. In this work, we used molecular orbital theory to demonstrate a favorable energetic pathway where H2O is first physically adsorbed on the virgin graphite surface with negligible change in molecular structure. Chemisorption occurs via O approaching the carbon edge site with one H atom stretching away from the O in the transition state. This is followed by a local minimum. state in which the stretching H is further disconnected from the O atoms and the remaining OH group is still on the carbon edge site. The disconnected H then pivot around the OH group to bond with the H of the OH group and forms H-2. The O atom remaining on the carbon edge site is subsequently desorbed as CO. The reverse occurs when H-2 reacts with the surface oxygen to produce H2O.
Resumo:
An investigation of the role of oxygen in the nitrous oxide/carbon reaction was carried out on various carbon samples (both graphitic and nongraphitic) over a range of temperatures and partial pressures. Previous work reported that oxygen strongly inhibited the nitrous oxide/carbon reaction. Large ratios of O-2/N2O were used in all previous work. In this work, the O-2/N2O ratio was kept below 1, and we found that oxygen did not inhibit the rate of the C + N2O reaction. Instead, the rate of the reaction in the presence of oxygen was essentially that predicted by the two independent reactions, nitrous oxide/carbon and oxygen/carbon, occurring simultaneously. A simple theoretical explanation is given for the observations, both past and present, on the basis of competitive chemisorption of nitrous oxide and oxygen on active sites.
Resumo:
A lipoamino acid based synthetic peptide, (Lipid Core Peptide, LCP) derived from the conserved region of group A streptococci (GAS) was evaluated as potential candidate in a vaccine to prevent GAS-associated diseases, including rheumatic heart disease and post-streptococcal acute glomerulonephritis. Multiple copies of a peptide sequence from the bacterial surface M protein were incorporated into a lipid core and it was used to immunize mice with and without the application of adjuvant. The LCP construct had significantly enhanced immunogenicity compared with the monomeric peptide epitope. Furthermore, the peptides incorporated into the LCP system generated antibodies without the use of any conventional adjuvant.
Resumo:
This work examines the effects of level of silica filler (at 0, 10, 30, 50wt%) on the gelation and vitrification of a model silica-filled diglycidyl ether of bisphenol F (DGEBF)/methylenedianiline (MDA) system. An increased filler level is shown to decrease the gelation and vitrification times at low temperatures (below 80degreesC). FTIR cure kinetics show that the reaction rates are increased and the activation energies of gelation are reduced at these temperatures, indicating that network formation is made easier. Entropic and catalytic reasons for this phenomenon are discussed. (C) 2003 Society of Chemical Industry.
Resumo:
Lipoamino acid-based synthetic peptides (lipid core peptides, LCP) derived from the type-specific and conserved region determinants of group A streptococci (GAS) were evaluated as potential candidate sequences in a vaccine to prevent GAS-associated diseases, including rheumatic heart, disease and poststreptococcal acute glomerulonephritis. The LCP peptides had significantly enhanced immunogenicity as compared with the monomeric peptide epitopes. Furthermore, the peptides incorporated into the LCP system generated epitope-specific antibodies without the use of any conventional adjuvant.
Resumo:
Incursions of Japanese encephalitis (JE) virus into northern Queensland are currently monitored using sentinel pigs. However, the maintenance of these pigs is expensive, and because pigs are the major amplifying hosts of the virus, they may contribute to JE transmission. Therefore, we evaluated a mosquito-based detection system to potentially replace the sentinel pigs. Single, inactivated JE-infected Culex annulirostris Skuse and C. sitiens Wiedemann were placed into pools of uninfected mosquitoes that were housed in a Mosquito Magnet Pro (MM) trap set under wet season field conditions in Cairns, Queensland for 0, 7, or 14 d. JE viral RNA was detected (cycling threshold [CT] = 40) in 11/ 12, 10/14, and 2/5 pools containing 200, 1,000, and 5,000 mosquitoes, respectively, using a TaqMan real-time reverse transcription-polymerase chain reaction (RT-PCR). The ability to detect virus was not affected by the length of time pools were maintained under field conditions, although the CT score tended to increase with field exposure time. Furthermore, JE viral RNA was detected in three pools of 1,000 mosquitoes collected from Badu Island using a MM trap. These results indicated that a mosquito trap system employing self-powered traps, such as the MosquitoMagnet, and a real-time PCR system, could be used to monitor for JE in remote areas.
Resumo:
Early pregnancy factor (EPF) is a secreted protein with growth regulatory and immunomodulatory properties. It is an extracellular form of the mitochondrial matrix protein chaperonin 10 (Cpn10), a molecular chaperone. An understanding of the mechanism of action of EPF and an exploration of therapeutic potential has been limited by availability of purified material. The present study was undertaken to develop a simple high-yielding procedure for preparation of material for structure/function studies, which could be scaled up for therapeutic application. Human EPF was expressed in Sf9 insect cells by baculovirus infection and in Escherichia coli using a heat inducible vector. A modified molecule with an additional N-terminal alanine was also expressed in E coli. The soluble protein was purified from cell lysates via anion exchange (negative-binding mode), cation exchange, and hydrophobic interaction chromatography, yielding similar to42 and 36 mg EPF from 300 ml bacterial and I L Sf9 cultures, respectively. The preparations were highly purified ( greater than or equal to99% purity on SDS-PAGE for the bacterial products and greater than or equal to97% for that of insect cells) and had the expected mass and heptameric structure under native conditions, as determined by mass spectrometry and gel permeation chromatography, respectively. All recombinant preparations exhibited activity in the EPF bioassay, the rosette inhibition test, with similar potency both to each other and to the native molecule. In two in vivo assays of immuno suppressive activity, the delayed-type hypersensitivity reaction and experimental autoimmune encephalomyelitis, the insect cell and modified bacterial products, both with N-terminal additions (acetylation or amino acid), exhibited similar levels of suppressive activity, but the bacterial product with no N-terminal modification had no effect in either assay. Studies by others have shown that N-terminal addition is not necessary for Cpn10 activity. By defining techniques for facile production of molecules with and without immunosuppressive properties, the present studies make it possible to explore mechanisms underlying the distinction between EPF and Cpn10 activity. (C) 2003 Elsevier Inc. All rights reserved.
Resumo:
In this paper we propose a novel fast and linearly scalable method for solving master equations arising in the context of gas-phase reactive systems, based on an existent stiff ordinary differential equation integrator. The required solution of a linear system involving the Jacobian matrix is achieved using the GMRES iteration preconditioned using the diffusion approximation to the master equation. In this way we avoid the cubic scaling of traditional master equation solution methods and maintain the low temperature robustness of numerical integration. The method is tested using a master equation modelling the formation of propargyl from the reaction of singlet methylene with acetylene, proceeding through long lived isomerizing intermediates. (C) 2003 American Institute of Physics.
Resumo:
Bound and resonance states of HO2 have been calculated quantum mechanically by the Lanczos homogeneous filter diagonalization method [Zhang and Smith, Phys. Chem. Chem. Phys. 3, 2282 (2001); J. Chem. Phys. 115, 5751 (2001)] for nonzero total angular momentum J = 1,2,3. For lower bound states, agreement between the results in this paper and previous work is quite satisfactory; while for high lying bound states and resonances these are the first reported results. A helicity quantum number V assignment (within the helicity conserving approximation) is performed and the results indicate that for lower bound states it is possible to assign the V quantum numbers unambiguously, but for resonances it is impossible to assign the V helicity quantum numbers due to strong mixing. In fact, for the high-lying bound states, the mixing has already appeared. These results indicate that the helicity conserving approximation is not good for the resonance state calculations and exact quantum calculations are needed to accurately describe the reaction dynamics for HO2 system. Analysis of the resonance widths shows that most of the resonances are overlapping and the interferences between them lead to large fluctuations from one resonance to another. In accord with the conclusions from earlier J = 0 calculations, this indicates that the dissociation of HO2 is essentially irregular. (C) 2003 American Institute of Physics.
Resumo:
Early pregnancy factor (EPF) is a secreted protein, present in serum during early pregnancy and essential for maintaining viability of the embryo. It is a homologue of chaperonin 10 (Cpn10) but, unlike Cpn10, it has an extracellular role. EPF has immunosuppressive and growth regulatory properties. Previously we have reported the preparation of recombinant EPF (rEPF) and shown that treatment with rEPF will suppress clinical signs of MBP-EAE in Lewis rats and PLP-EAE in SJL/J mice. In the present study, these findings have been extended to investigate possible mechanisms involved in the action of EPF. Following treatment of mice with rEPF from the day of inoculation, there were fewer infiltrating CD3+ and CD4+ cells in the parenchyma of the spinal cord during the onset of disease and after the initial episode, compared with mice treated with vehicle. Expression of the integrins LFA-1, VLA-4 and Mac-1 and of members of the immunoglobulin superfamily of adhesion molecules ICAM-1 and VCAM-1 was suppressed in the central nervous system (CNS) following rEPF treatment. The expression of PECAM-1 was not affected. To determine if rEPF suppressed T cell activation in the periphery, the delayed-type hypersensitivity (DTH) reaction of normal BALB/c mice to trinitrochlorobenzene (TNCB) following treatment with rEPF was studied. The results showed that treatment with rEPF suppressed the DTH reaction, demonstrating the ability of EPF to downregulate the cell-mediated immune response. These results indicate that suppression of immunological mechanisms by rEPF plays a major role in the reduction of clinical signs of disease in experimental autoimmune encephalomyelitis (EAE). (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
The integrated control of nitrate recirculation and external carbon addition in a predenitrification biological wastewater treatment system is studied. The proposed control structure consists of four feedback control loops, which manipulate the nitrate recirculation and the carbon dosage flows in a highly coordinated manner such that the consumption of external carbon is minimised while the nitrate discharge limits (based on both grab and composite samples) are met. The control system requires the measurement of the nitrate concentrations at the end of both the anoxic and the aerobic zones. Distinct from ordinary control systems, which typically minimise the variation in the controlled variables, the proposed control system essentially maximises the diurnal variation of the effluent nitrate concentration and through this maximises the use of influent COD for denitrification, thus minimising the requirement for external carbon source. Simulation studies using a commonly accepted simulation benchmark show that the controlled system consistently achieves the designated effluent quality with minimum costs.
Resumo:
[GRAPHICS] Rapid access to the ABCE ring system of the C-20 diterpene alkaloids was achieved by silver(I)-promoted intramolecular Friedel-Crafts arylation of a functional group-specific 5-bromo-3-azabicyclo[3.3.1]nonane derivative.
Resumo:
Since the discovery of ferromagnetism well above room temperature in the Co-doped TiO2 system, diluted magnetic semiconductors based on TiO2 doped with transition metals have generated great interest because of their potential use in the development of spintronic devices. The purpose of this paper is to report on a new and swift chemical route to synthesise highly stable anatase single-phase Co- and Fe-doped TiO2 nanoparticles, with dopant concentrations of up to 10 at.-% and grain sizes that range between 20 and 30 nm. Complementary structural, microstructural and chemical analyses of the different nanopowders synthesised strongly support the hypothesis that a homogeneous distribution of the dopant element in the substitutional sites of the anatase structure has been achieved. Moreover, UV/Vis diffuse reflectance spectra of powder samples show redshifts to lower energies and decreasing bandgap energies with increasing Co or Fe concentration, which is consistent with n-type doping of the TiO2 anatase matrix. Films of Co-doped TiO2 were successfully deposited onto Si (100) substrates by the dip-coating method, with suspensions of Ti1-xCOxO2 nanoparticles in ethylene glycol. ((C)Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2008).