823 resultados para canapa rinforzo fibre naturali legno
Resumo:
We report on a distributed moisture detection scheme which uses a cable design based on waterswellable hydrogel polymers. The cable modulates the loss characteristic of light guided within a multi-mode optical fibre in response to relative water potentials in the surrounding environment. Interrogation of the cable using conventional optical time-domain reflectometry (OTDR) instruments allows water ingress points to be identified and located with a spatial resolution of 50 cm. The system has been tested in a simulated tendon duct grouting experiment as a means of mapping the extent of fill along the duct during the grouting process. Voided regions were detected and identified to within 50 cm. A series of salt solutions has been used to determine the sensor behaviour over a range of water potentials. These experiments predict that measurements of soil moisture content can be made over the range 0 to – 1500 kPa. Preliminary data on soil measurements have shown that the sensor can detect water pressure changes with a resolution of 45 kPa. Applications for the sensor include quality assurance of grouting procedures, verification of waterproofing barriers and soil moisture content determination (for load-bearing calculations).
Resumo:
A new automatic feedback potometer for physiological studies of water uptake by root systems is described. A dual-optical-fibre amplitude-modulating displacement transducer of improved sensitivity is employed to detect the changes in liquid level. The merits of optimal double-cut fibres, which make full use of the critical angle and improve coupling between the emitter and the receiver, have resulted in a sensor that is 64 times more responsive than the simple emitter - detector probe. Positioning the optical fibre transducer in a narrow capillary and using feedback to control the liquid level allows continuous measurement of volumes in the nanolitre range. The optical sensor used does not need re-calibration for the different salt solutions used in such studies.
Resumo:
This paper presents a completely new design of a bogie-frame made of glass fibre reinforced composites and its performance under various loading conditions predicted by finite element analysis. The bogie consists of two frames, with one placed on top of the other, and two axle ties connecting the axles. Each frame consists of two side arms and a transom between. The top frame is thinner and more compliant and has a higher curvature compared with the bottom frame. Variable vertical stiffness can be achieved before and after the contact between the two frames at the central section of the bogie to cope with different load levels. Finite element analysis played a very important role in the design of this structure. Stiffness and stress levels of the full scale bogie presented in this paper under various loading conditions have been predicted by using Marc provided by MSC Software. In order to verify the finite element analysis (FEA) models, a fifth scale prototype of the bogie has been made and tested under quasi-static loading conditions. Results of testing on the fifth scale bogie have been used to fine tune details like contact and friction in the fifth scale FEA models. These conditions were then applied to the full scale models. Finite element analysis results show that the stress levels in all directions are low compared with material strengths.
Resumo:
This paper presents the results of quasi-static and dynamic testing of glass fiber-reinforced polyester leaf suspension for rail freight vehicles named Euroleaf. The principal elements of the suspension's design and manufacturing process are initially summarized. Comparison between quasi-static tests and finite element predictions are then presented. The Euroleaf suspension have been mounted on a tipper wagon and tested dynamically at tare and full load on a purpose-built shaker rig. A shaker rig dynamic testing methodology has been pioneered for rail vehicles, which follows closely road vehicle suspension dynamic testing methodology. The use and evaluation of this methodology have demonstrated that the Euroleaf suspension is dynamically much softer than steel suspensions even though it is statically much stiffer. As a consequence, the suspension dynamic loading at laden loading conditions is reduced compared to the most advanced steel leaf suspension over shaker rig track tests.
Resumo:
Wheat dextrin soluble fibre may have metabolic and health benefits, potentially acting via mechanisms governed by the selective modulation of the human gut microbiota. Our aim was to examine the impact of wheat dextrin on the composition and metabolic activity of the gut microbiota. We used a validated in vitro three-stage continuous culture human colonic model (gut model) system comprised of vessels simulating anatomical regions of the human colon. To mimic human ingestion, 7 g of wheat dextrin (NUTRIOSE® FB06) was administered to three gut models, twice daily at 10.00 and 15.00, for a total of 18 days. Samples were collected and analysed for microbial composition and organic acid concentrations by 16S rRNA-based fluorescence in situ hybridisation and gas chromatography approaches, respectively. Wheat dextrin mediated a significant increase in total bacteria in vessels simulating the transverse and distal colon, and a significant increase in key butyrate-producing bacteria Clostridium cluster XIVa and Roseburia genus in all vessels of the gut model. The production of principal short-chain fatty acids, acetate, propionate and butyrate, which have been purported to have protective, trophic and metabolic host benefits, were increased. Specifically, wheat dextrin fermentation had a significant butyrogenic effect in all vessels of the gut model and significantly increased production of acetate (vessels 2 and 3) and propionate (vessel 3), simulating the transverse and distal regions of the human colon, respectively. In conclusion, wheat dextrin NUTRIOSE® FB06 is selectively fermented in vitro by Clostridium cluster XIVa and Roseburia genus and beneficially alters the metabolic profile of the human gut microbiota.
Resumo:
Colorectal cancer is the third most prevalent cancer worldwide and the most common diet-related cancer, influenced by diets rich in red meat, low in plant foods and high in saturated fats. Observational studies have shown that fruit and vegetable intake may reduce colorectal cancer risks, although the precise bioactive components remain unclear. This review will outline the evidence for the role of polyphenols, glucosinolates and fibres against cancer progression in the gastrointestinal tract. Those bioactive compounds are considered protective agents against colon cancer, with evidence taken from epidemiological, human clinical, animal and in vitro studies. Various mechanisms of action have been postulated, such as the potential of polyphenols and glucosinolates to inhibit cancer cell growth and the actions of insoluble fibres as prebiotics and the evidence for these actions are detailed within. In addition, recent evidence suggests that polyphenols also have the potential to shift the gut ecology in a beneficial manner. Such actions of both fibre and polyphenols in the gastrointestinal tract and through interaction with gut epithelial cells may act in an additive manner to help explain why certain fruits and vegetables, but not all, act to differing extents to inhibit cancer incidence and progression. Indeed, a focus on the individual actions of such fruit and vegetable components, in particular polyphenols, glucosinolates and fibres is necessary to help explain which components are active in reducing gastrointestinal cancer risk.
Resumo:
Oil palm empty fruit bunches (OPEFB) fibre, a by-product generated from non-woody, tropical perennial oil palm crop was evaluated for xylooligosaccharides (XOS) production. Samples of OPEFB fibre were subjected to non-isothermal autohydrolysis treatment using a temperature range from 150 to 220 °C. The highest XOS concentration, 17.6 g/L which relayed from solubilisation of 63 g/100 g xylan was achieved at 210 °C and there was a minimum amount of xylose and furfural being produced. The chromatographic purification which was undertaken to purify the oligosaccharide-rich liquor resulted in a product with 74–78% purity, of which 83–85% was XOS with degree of polymerisation (DP) between 5 and 40.
Resumo:
The composition of the extracellular matrix (ECM) of skeletal muscle fibres is a unique environment that supports the regenerative capacity of satellite cells; the resident stem cell population. The impact of environment has great bearing on key properties permitting satellite cells to carry out tissue repair. In this study, we have investigated the influence of the ECM and glycolytic metabolism on satellite cell emergence and migration- two early processes required for muscle repair. Our results show that both influence the rate at which satellite cells emerge from the sub-basal lamina position and their rate of migration. These studies highlight the necessity of performing analysis of satellite behaviour on their native substrate and will inform on the production of artificial scaffolds intended for medical uses.
Resumo:
Dietary management of the human gut microbiota towards a more beneficial composition is one approach that may improve host health. To date, a large number of human intervention studies have demonstrated that dietary consumption of certain food products can result in significant changes in the composition of the gut microbiota i.e. the prebiotic concept. Thus the prebiotic effect is now established as a dietary approach to increase beneficial gut bacteria and it has been associated with modulation of health biomarkers and modulation of the immune system. Promitor™ Soluble Corn Fibre (SCF) is a well-known maize-derived source of dietary fibre with potential selective fermentation properties. Our aim was to determine the optimum prebiotic dose of tolerance, desired changes to microbiota and fermentation of SCF in healthy adult subjects. A double-blind, randomised, parallel study was completed where volunteers (n = 8/treatment group) consumed 8, 14 or 21 g from SCF (6, 12 and 18 g/fibre delivered respectively) over 14-d. Over the range of doses studied, SCF was well tolerated Numbers of bifidobacteria were significantly higher for the 6 g/fibre/day compared to 12g and 18g/fibre delivered/day (mean 9.25 and 9.73 Log10 cells/g fresh faeces in the pre-treatment and treatment periods respectively). Such a numerical change of 0.5 Log10 bifidobacteria/g fresh faeces is consistent with those changes observed for inulin-type fructans, which are recognised prebiotics. A possible prebiotic effect of SCF was therefore demonstrated by its stimulation of bifidobacteria numbers in the overall gut microbiota during a short-term intervention.
Resumo:
The aim of the study was to evaluate the bond strength of fibre glass and carbon fibre posts in the root canal walls cemented with self-adhesive (RelyX-Unicem) and chemical (Cement-Post) resin cements. Forty maxillary canines were divided into four groups according to the cement and post used and submitted to the push-out test (0.5 mm min(-1)). The data were submitted to statistical analysis (2-way ANOVA, Bonferroni - P < 0.05) and fracture analysis by Scanning Electronic Microscopy. Fibre glass presented the best results when cemented with RelyX-Unicem and Cement-Post (P < 0.05). RelyX-Unicem presented the highest bond strength values for both posts (P < 0.05). Fracture analysis showed predominance of cohesive fracture of post for RelyX-Unicem and adhesive fracture between dentin/cement and mixed for Cement-Post. The bond strength values were significantly affected by the type of post and cement used and the highest values were found for fibre glass posts and RelyX-Unicem.
Resumo:
The objective of the present work was to evaluate the effects of 14 years of weathering exposition on the microstructure and mineral composition of cementitious roofing tiles, still in service, reinforced with fique fibres (Furcrae gender). The results show that tiles under weathering exposition presented higher water absorption and apparent void volume than tiles under laboratory exposition. The continuous hydration of cement and natural carbonation filled the smaller pores but contrarily the large pores remained in the porous fibre to matrix interface in the samples exposed to weathering. On the other hand, their microstructure presented lower air permeability than samples aged in the internal environment of the laboratory. Besides, in the weathering aged tiles takes place a more intensive hydration process as it was identified greater amount of hydrated phases than in the laboratory aged specimens. The present results contribute to understanding the consequences of tropical weathering on the fibre-cement degradation. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
The present work evaluated the effects of accelerated carbonation on mechanical and physical characteristics of cementitious roofing tiles reinforced with vegetable fibre. The maximum load and toughness of the tiles have increased approximately 25% and 80% respectively as a consequence of the accelerated carbonation. Water absorption and apparent porosity decreased with carbonation while bulk density increased as a clear indication of the densification of the composite. The improvement on the mechanical performance suggests that the fibres retained their tensile strength in the inorganic matrix. Results of specimens extracted from the tested tiles after approximately 480 days in laboratory environment and further aged indicate that soak and dry cycles promoted some leaching of hydration products and more voids and lower density when performed before carbonation. The results indicate the utilization of accelerated carbonation as an effective procedure to mitigate the degradation suffered by the cellulose fibres in the less aggressive medium. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Let M -> B, N -> B be fibrations and f(1), f(2): M -> N be a pair of fibre-preserving maps. Using normal bordism techniques we define an invariant which is an obstruction to deforming the pair f(1), f(2) over B to a coincidence free pair of maps. In the special case where the two fibrations axe the same and one of the maps is the identity, a weak version of our omega-invariant turns out to equal Dold`s fixed point index of fibre-preserving maps. The concepts of Reidemeister classes and Nielsen coincidence classes over B are developed. As an illustration we compute e.g. the minimal number of coincidence components for all homotopy classes of maps between S(1)-bundles over S(1) as well as their Nielsen and Reidemeister numbers.
Resumo:
A dynamic headspace solid-phase microextraction (HS-SPME) and gas chromatography coupled to ion trap mass spectrometry (GC–ITMS) method was developed and applied for the qualitative determination of the volatile compounds present in commercial whisky samples which alcoholic content was previously adjusted to 13% (v/v). Headspace SPME experimental conditions, such as fibre coating, extraction temperature and extraction time, were optimized in order to improve the extraction process. Five different SPME fibres were used in this study, namely, poly(dimethylsiloxane)(PDMS),poly(acrylate)(PA),Carboxen-poly(dimethylsiloxane)(CAR/PDMS),Carbowax-divinylbenzene(CW/DVB)and Carboxen-poly(dimethylsiloxane)-divinylbenzene (CAR/PDMS/DVB). The best results were obtained using a 75 m CAR/PDMS fibre during headspace extraction at 40◦C with stirring at 750rpm for 60min, after saturating the samples with salt. The optimised methodology was then appliedtoinvestigatethevolatilecompositionprofileofthreeScotchwhiskysamples—BlackLabel,BallantinesandHighlandClan.Approximately seventy volatile compounds were identified in the these samples, pertaining at several chemical groups, mainly fatty acids ethyl esters, higher alcohols, fatty acids, carbonyl compounds, monoterpenols, C13 norisoprenoids and some volatile phenols. The ethyl esters form an essential group of aroma components in whisky, to which they confer a pleasant aroma, with “fruity” odours. Qualitatively, the isoamyl acetate, with “banana” aroma,wasthemostinteresting.Quantitatively,significantcomponentsareethylestersofcaprilic,capricandlauricacids.Thehighestconcentration of fatty acids, were observed for caprilic and capric acids. From the higher alcohols the fusel oils (3-methylbutan-1-ol and 2.phenyletanol) are the most important ones.