813 resultados para biocompatible alloys
Resumo:
Titanium alloys are favorable implant materials for orthopedic applications, due to their desirable properties such as good corrosion resistance, low elasticity modulus, and excellent biocornpatibility. The research on titanium alloys is concentrated in the beta type, as the Ti-20Mo alloys and the addition of interstitial elements in these metals cause changes in their mechanical properties. The mechanical spectroscopy measurements have been frequently used in order to verify the behavior of these interstitials atoms in metallic alloys. This paper presents the study of oxygen diffusion in Ti-20Mo alloys using mechanical spectroscopy measurements. A thermally activated relaxation structure was observed in the sample after oxygen doping. It was associated with the interstitial diffusion of oxygen atoms in a solid solution in the alloy. The diffusion coefficient for the oxygen diffusion in the alloy was obtained by the frequency dependence of the peak temperature and by using a simple mathematical treatment of the relaxation structure and the Arrhenius law.
Resumo:
The mechanical properties of metals with bcc structure, such as niobium and its alloys, have changed significantly with the introduction of heavy interstitial elements. These interstitial elements (nitrogen, for example), present in the alloy, occupy octahedral sites and constitute an elastic dipole of tetragonal symmetry and might produce anelastic relaxation. This article presents the effect of nitrogen on the anelastic properties of Nb-1.0 wt% Zr alloys, measured by means of mechanical spectroscopy using a torsion pendulum. The results showed complex anelastic relaxation structures, which were resolved into their constituent peaks, representing each relaxation process. These processes are due to stress-induced ordering of the interstitial elements around the niobium and zirconium of the alloy.
Resumo:
Anelastic relaxation measurements were performed in a Nb-46wt%Ti alloy, in the temperature range of 300 to 700 K, using a torsion pendulum operating at an oscillating frequency near 2.0 Hz. The samples were measured in different conditions: cold worked, annealed in ultra-high vacuum and doped with several quantities of nitrogen. The relaxation spectra obtained were resolved into their component peaks, corresponding to the different kinds of interaction of the interstitial solutes with the metallic matrix. The relaxation parameters of each process were calculated using Debye's elementary peaks.
Resumo:
In this work, a simple route to prepare carbon supported Pt/C, Pt:Ru/C, Pt:Mo/C and Pt:Ru:Mo/C catalysts is reported. The electrochemical properties of the several carbon materials used as substrates in the absence and in the presence of supported platinum and platinum alloys catalysts were investigated using cyclic voltammetry and employing the thin porous coating electrode technique. The activity of the dispersed catalysts composed of Pt/C with respect to the oxygen reduction and of alloy/C with respect to methanol oxidation was investigated using steady state polarization measurements. The performance with respect to the oxygen reduction reaction of the Pt/C catalyst prepared on heat-treated Vulcan carbon substrate is equivalent to that reported in the literature for the state-of-the-art electrocatysts. Pt:Ru:Mo/C samples prepared in this work presented the higher catalytic effect for methanol electro-oxidation.
Resumo:
The 2024 and 7050 aluminium alloys used as aircraft components were subjected to laboratory corrosion tests in sodium chloride solution, Light-microscope examinations make it possible to characterise morphological aspects of the localised corrosion. Image analysis was used to determine both depth and width of pits over corroded surfaces. It has been concluded that the annealing could reduce the pit growth in both alloys, by means of grains recrystallization or recovery. The 2024 alloy also tends to present an exfoliation mechanism, mainly throughout non-recrystallized and recrystallized grain boundaries, increasing the width and sustaining the depth of pit cavities during exposition to saline atmosphere. SEM and EDS analysis reveal the morphology and elemental distribution of the corrosion products formed after immersion corrosion test. Some of these products were identified by X-ray diffraction analysis. For 2024, Al(OH)(3), MS(OH)(2) and Cu2O were found. AI(OH)(3) and Cu2O were also found in 7050 samples.
Resumo:
The effects of heat treatment on morphologies and microstructures of Al 2024 and Al 7050 alloys, used as aircraft components, were studied by metallographic techniques. Light microscopy (LM) and quantitative image analysis were used to characterize the precipitate dispersion and morphology for these alloys. The application of the scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) combined techniques for studying these multiphase systems makes it possible to distinguish and quantify the different phases in the surface structure. Xray diffraction also permitted a qualitative comparison of the structures before and after heat treatments.
Resumo:
This work discusses on the preparation of Ni-45Ti-5Mo, Ni-40Ti-10Mo and Ni-46Ti-2Mo-2Zr (at-%) alloys by high-energy ball milling and hot pressing, which are potentially attractive for dental and medical applications. The milling process was performed in stainless steel balls (19mm diameter) and vials (225 mL) using a rotary speed of 300rpm and a ball-to-powder weight ratio of 10:1. Hot pressing under vacuum was performed in a BN-coated graphite crucible at 900 degrees C for 1 h using a load of 20 MPa. The milled and hot-pressed materials were characterized by X-ray diffraction, electron scanning microscopy, and electron dispersive spectrometry. Peaks of B2-NiTi and Ni4Ti3 were identified in XRD patterns of Ni-45Ti-5Mo, Ni-40Ti-10Mo and Ni-46Ti-2Mo-2Zr powders milled for 1h. The NiTi compound dissolved small Mo amounts lower than 4 at%, which were measured by EDS analysis. Moreover, it was identified the existence of an unknown Mo-rich phase in microstructures of the hot-pressed Ni-Ti-Mo alloys.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Nanocrystalline FeCuNbSiB alloys obtained from the partial crystallization of amorphous alloys have attracted technological attention due to their excellent magnetic properties, but the relationship between corrosion resistance and magnetic properties is not well established. The influence of Nb as an alloying element and effect of partial crystallization on the corrosion resistance of Fe73.5Si13.5B10Cu1, Fe73.5Si13.5B7Nb3Cu1 and Fe73.5Si13.5B5Nb5Cu1 amorphous alloys were studied and the effect of corrosion on magnetization saturation flux density, B-s, was investigated. The addition of niobium on amorphous alloys increases the corrosion resistance. The raise of Nb content from 3 to 5% increases the corrosion resistance also. A partial crystallization increases the corrosion resistance of the samples with Nb. However, in the samples without Nb, the partial crystallization diminishes the corrosion resistance. The values of B-s depend on the alloy corrosion resistance.) (C) 2002 Elsevier B.V. B.V. All rights reserved.
Resumo:
Statement of problem. Different combinations of Co-Cr alloys bonded to ceramic have been used in dentistry; however, the bond strength of ceramic to metal can vary because of different compositions of these alloys.Purpose. The purpose of this study was to evaluate the shear bond strength of a dental ceramic to 5 commercially available Co-Cr alloys.Material and methods. Five Co-Cr alloys (IPS d.SIGN 20, IPS d.SIGN 30, Remanium 2000, Heranium P, and Wirobond C) were tested and compared to a control group of an Au-Pd alloy (Olympia). Specimen disks, 5 mm high and 4 mm in diameter, were fabricated with the lost-wax technique. Sixty specimens were prepared using opaque and dentin ceramics (VITA Omega 900), veneered, 4 mm high and 4 mm in diameter, over the metal specimens (n = 10). The shear bond strength test was performed in a universal testing machine with a crosshead speed of 0.5 mm/min. After shear bond testing, fracture surfaces were evaluated in a stereomicroscope under x25 magnification. Ultimate shear bond strength (MPa) data were analyzed with 1-way ANOVA and the Tukey HSD test (alpha = .05).Results. The mean (SID) bond strengths (MPa) were: 61.4 (7.8) for Olympia; 94.0 (18.9) for IPS 20; 96.8 (10.2) for I PS 30; 75.1 (12.4) for Remanium; 71.2 (14.3) for Heranium P; and 63.2 (10.9) for Wirobond C. Mean bond strengths for IPS 20 and IPS 30 were not significantly different, but were significantly (P<.001) higher than mean bond strengths for the other 4 alloys, which were not significantly different from each other.Conclusions. Bond strength of a dental ceramic to a Co-Cr alloy is dependent on the alloy composition.