821 resultados para bidirectional associative memory neural networks


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The freshwater mollusc Lymnaea stagnalis was utilized in this study to further the understanding of how network properties change as a result of associative learning, and to determine whether or not this plasticity is dependent on previous experience during development. The respiratory and neural correlates of operant conditioning were first determined in normally reared Lymnaea. The same procedure was then applied to differentially reared Lymnaea, that is, animals that had never experienced aerial respiration during their development. The aim was to determine whether these animals would demonstrate the same responses to the training paradigm. In normally reared animals, a behavioural reduction in aerial respiration was accompanied by numerous changes within the neural network. Specifically, I provide evidence of changes at the level of the respiratory central pattern generator and the motor output. In the differentially reared animals, there was little behavioural data to suggest learning and memory. There were, however, significant differences in the network parameters, similar to those observed in normally reared animals. This demonstrated an effect of operant conditioning on differentially reared animals. In this thesis, I have identified additional correlates of operant conditioning in normally reared animals and provide evidence of associative learning in differentially reared animals. I conclude plasticity is not dependent on previous experience, but is rather ontogenetically programmed within the neural network.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

As computers approach the physical limits of information storable in memory, new methods will be needed to further improve information storage and retrieval. We propose a quantum inspired vector based approach, which offers a contextually dependent mapping from the subsymbolic to the symbolic representations of information. If implemented computationally, this approach would provide exceptionally high density of information storage, without the traditionally required physical increase in storage capacity. The approach is inspired by the structure of human memory and incorporates elements of Gardenfors’ Conceptual Space approach and Humphreys et al.’s matrix model of memory.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A key question in neuroscience is how memory is selectively allocated to neural networks in the brain. This question remains a significant research challenge, in both rodent models and humans alike, because of the inherent difficulty in tracking and deciphering large, highly dimensional neuronal ensembles that support memory (i.e., the engram). In a previous study we showed that consolidation of a new fear memory is allocated to a common topography of amygdala neurons. When a consolidated memory is retrieved, it may enter a labile state, requiring reconsolidation for it to persist. What is not known is whether the original spatial allocation of a consolidated memory changes during reconsolidation. Knowledge about the spatial allocation of a memory, during consolidation and reconsolidation, provides fundamental insight into its core physical structure (i.e., the engram). Using design-based stereology, we operationally define reconsolidation by showing a nearly identical quantity of neurons in the dorsolateral amygdala (LAd) that expressed a plasticity-related protein, phosphorylated mitogen-activated protein kinase, following both memory acquisition and retrieval. Next, we confirm that Pavlovian fear conditioning recruits a stable, topographically organized population of activated neurons in the LAd. When the stored fear memory was briefly reactivated in the presence of the relevant conditioned stimulus, a similar topography of activated neurons was uncovered. In addition, we found evidence for activated neurons allocated to new regions of the LAd. These findings provide the first insight into the spatial allocation of a fear engram in the LAd, during its consolidation and reconsolidation phase.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

How memory is organized within neural networks is a fundamental question in neuroscience. We used Pavlovian fear conditioning to study the discrete organization patterns of neurons activated in an associative memory paradigm. In Pavlovian fear conditioning a neutral stimulus, such as an auditory tone, is temporally paired with an aversive unconditioned stimulus (US), such as a foot shock...

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents an Artificial Neural Network (ANN) approach for locating faults in distribution systems. Different from the traditional Fault Section Estimation methods, the proposed approach uses only limited measurements. Faults are located according to the impedances of their path using a Feed Forward Neural Networks (FFNN). Various practical situations in distribution systems, such as protective devices placed only at the substation, limited measurements available, various types of faults viz., three-phase, line (a, b, c) to ground, line to line (a-b, b-c, c-a) and line to line to ground (a-b-g, b-c-g, c-a-g) faults and a wide range of varying short circuit levels at substation, are considered for studies. A typical IEEE 34 bus practical distribution system with unbalanced loads and with three- and single- phase laterals and a 69 node test feeder with different configurations are considered for studies. The results presented show that the proposed approach of fault location gives close to accurate results in terms of the estimated fault location.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents the capability of the neural networks as a computational tool for solving constrained optimization problem, arising in routing algorithms for the present day communication networks. The application of neural networks in the optimum routing problem, in case of packet switched computer networks, where the goal is to minimize the average delays in the communication have been addressed. The effectiveness of neural network is shown by the results of simulation of a neural design to solve the shortest path problem. Simulation model of neural network is shown to be utilized in an optimum routing algorithm known as flow deviation algorithm. It is also shown that the model will enable the routing algorithm to be implemented in real time and also to be adaptive to changes in link costs and network topology. (C) 2002 Elsevier Science Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, the architecture of a vector-matrix multiplier (MVM) is simulated. The optical design can be made compact by the use of GRIN lenses for the optical fan-in. The intended application area was in storage area networks (SANs) but the concept can be applied to a neural network. © 2011 Allerton Press, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is well known that the storage capacity may be large if all memory patterns are orthogonal to each other. In this paper, a clear description is given about the relation between the dimension N and the maximal number of orthogonal vectors with components +/-1, and also the conception of attractive index is proposed to estimate the basin of attraction. Theoretic analysis and computer simulation show that each memory pattern's basin of attraction contains at least one Hamming ball when the storage capacity is less than 0.33N which is better than usual 0.15 N.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Calligraphic writing presents a rich set of challenges to the human movement control system. These challenges include: initial learning, and recall from memory, of prescribed stroke sequences; critical timing of stroke onsets and durations; fine control of grip and contact forces; and letter-form invariance under voluntary size scaling, which entails fine control of stroke direction and amplitude during recruitment and derecruitment of musculoskeletal degrees of freedom. Experimental and computational studies in behavioral neuroscience have made rapid progress toward explaining the learning, planning and contTOl exercised in tasks that share features with calligraphic writing and drawing. This article summarizes computational neuroscience models and related neurobiological data that reveal critical operations spanning from parallel sequence representations to fine force control. Part one addresses stroke sequencing. It treats competitive queuing (CQ) models of sequence representation, performance, learning, and recall. Part two addresses letter size scaling and motor equivalence. It treats cursive handwriting models together with models in which sensory-motor tmnsformations are performed by circuits that learn inverse differential kinematic mappings. Part three addresses fine-grained control of timing and transient forces, by treating circuit models that learn to solve inverse dynamics problems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Most associative memory models perform one level mapping between predefined sets of input and output patterns1 and are unable to represent hierarchical knowledge. Complex AI systems allow hierarchical representation of concepts, but generally do not have learning capabilities. In this paper, a memory model is proposed which forms concept hierarchy by learning sample relations between concepts. All concepts are represented in a concept layer. Relations between a concept and its defining lower level concepts, are chunked as cognitive codes represented in a coding layer. By updating memory contents in the concept layer through code firing in the coding layer, the system is able to perform an important class of commonsense reasoning, namely recognition and inheritance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new neural network architecture is introduced for the recognition of pattern classes after supervised and unsupervised learning. Applications include spatio-temporal image understanding and prediction and 3-D object recognition from a series of ambiguous 2-D views. The architecture, called ART-EMAP, achieves a synthesis of adaptive resonance theory (ART) and spatial and temporal evidence integration for dynamic predictive mapping (EMAP). ART-EMAP extends the capabilities of fuzzy ARTMAP in four incremental stages. Stage 1 introduces distributed pattern representation at a view category field. Stage 2 adds a decision criterion to the mapping between view and object categories, delaying identification of ambiguous objects when faced with a low confidence prediction. Stage 3 augments the system with a field where evidence accumulates in medium-term memory (MTM). Stage 4 adds an unsupervised learning process to fine-tune performance after the limited initial period of supervised network training. Each ART-EMAP stage is illustrated with a benchmark simulation example, using both noisy and noise-free data. A concluding set of simulations demonstrate ART-EMAP performance on a difficult 3-D object recognition problem.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This article introduces an unsupervised neural architecture for the control of a mobile robot. The system allows incremental learning of the plant during robot operation, with robust performance despite unexpected changes of robot parameters such as wheel radius and inter-wheel distance. The model combines Vector associative Map (VAM) learning and associate learning, enabling the robot to reach targets at arbitrary distances without knowledge of the robot kinematics and without trajectory recording, but relating wheel velocities with robot movements.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This article describes a neural network model, called the VITEWRITE model, for generating handwriting movements. The model consists of a sequential controller, or motor program, that interacts with a trajectory generator to move a. hand with redundant degrees of freedom. The neural trajectory generator is the Vector Integration to Endpoint (VITE) model for synchronous variable-speed control of multijoint movements. VITE properties enable a simple control strategy to generate complex handwritten script if the hand model contains redundant degrees of freedom. The proposed controller launches transient directional commands to independent hand synergies at times when the hand begins to move, or when a velocity peak in a given synergy is achieved. The VITE model translates these temporally disjoint synergy commands into smooth curvilinear trajectories among temporally overlapping synergetic movements. The separate "score" of onset times used in most prior models is hereby replaced by a self-scaling activity-released "motor program" that uses few memory resources, enables each synergy to exhibit a unimodal velocity profile during any stroke, generates letters that are invariant under speed and size rescaling, and enables effortless. connection of letter shapes into words. Speed and size rescaling are achieved by scalar GO and GRO signals that express computationally simple volitional commands. Psychophysical data concerning band movements, such as the isochrony principle, asymmetric velocity profiles, and the two-thirds power law relating movement curvature and velocity arise as emergent properties of model interactions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This special issue of Cortex focuses on the relative contribution of different neural networks to memory and the interaction of 'core' memory processes with other cognitive processes. In this article, we examine both. Specifically, we identify cognitive processes other than encoding and retrieval that are thought to be involved in memory; we then examine the consequences of damage to brain regions that support these processes. This approach forces a consideration of the roles of brain regions outside of the frontal, medial-temporal, and diencephalic regions that form a central part of neurobiological theories of memory. Certain kinds of damage to visual cortex or lateral temporal cortex produced impairments of visual imagery or semantic memory; these patterns of impairment are associated with a unique pattern of amnesia that was distinctly different from the pattern associated with medial-temporal trauma. On the other hand, damage to language regions, auditory cortex, or parietal cortex produced impairments of language, auditory imagery, or spatial imagery; however, these impairments were not associated with amnesia. Therefore, a full model of autobiographical memory must consider cognitive processes that are not generally considered 'core processes,' as well as the brain regions upon which these processes depend.