999 resultados para accident models
Resumo:
A computationally efficient sequential Monte Carlo algorithm is proposed for the sequential design of experiments for the collection of block data described by mixed effects models. The difficulty in applying a sequential Monte Carlo algorithm in such settings is the need to evaluate the observed data likelihood, which is typically intractable for all but linear Gaussian models. To overcome this difficulty, we propose to unbiasedly estimate the likelihood, and perform inference and make decisions based on an exact-approximate algorithm. Two estimates are proposed: using Quasi Monte Carlo methods and using the Laplace approximation with importance sampling. Both of these approaches can be computationally expensive, so we propose exploiting parallel computational architectures to ensure designs can be derived in a timely manner. We also extend our approach to allow for model uncertainty. This research is motivated by important pharmacological studies related to the treatment of critically ill patients.
Resumo:
Over the past decades there has been a considerable development in the modeling of car-following (CF) behavior as a result of research undertaken by both traffic engineers and traffic psychologists. While traffic engineers seek to understand the behavior of a traffic stream, traffic psychologists seek to describe the human abilities and errors involved in the driving process. This paper provides a comprehensive review of these two research streams. It is necessary to consider human-factors in {CF} modeling for a more realistic representation of {CF} behavior in complex driving situations (for example, in traffic breakdowns, crash-prone situations, and adverse weather conditions) to improve traffic safety and to better understand widely-reported puzzling traffic flow phenomena, such as capacity drop, stop-and-go oscillations, and traffic hysteresis. While there are some excellent reviews of {CF} models available in the literature, none of these specifically focuses on the human factors in these models. This paper addresses this gap by reviewing the available literature with a specific focus on the latest advances in car-following models from both the engineering and human behavior points of view. In so doing, it analyses the benefits and limitations of various models and highlights future research needs in the area.
Resumo:
Conceptual modelling continues to be an important means for graphically capturing the requirements of an information system. Observations of modelling practice suggest that modellers often use multiple conceptual models in combination, because they articulate different aspects of real-world domains. Yet, the available empirical as well as theoretical research in this area has largely studied the use of single models, or single modelling grammars. We develop a Theory of Combined Ontological Coverage by extending an existing theory of ontological expressiveness of conceptual modelling grammars. Our new theory posits that multiple conceptual models are used to increase the maximum coverage of the real-world domain being modelled, whilst trying to minimize the ontological overlap between the models. We illustrate how the theory can be applied to analyse sets of conceptual models. We develop three propositions of the theory about evaluations of model combinations in terms of users’ selection, understandability and usefulness of conceptual models.
Resumo:
This paper presents a discussion on the use of MIMO and SISO techniques for identification of the radiation force terms in models for surface vessels. We compare and discuss two techniques recently proposed in literature for this application: time domain identification and frequency domain identification. We compare the methods in terms of estimates model order, accuracy of the fit, use of the available information, and ease of use and implementation.
Resumo:
Mobile robots and animals alike must effectively navigate their environments in order to achieve their goals. For animals goal-directed navigation facilitates finding food, seeking shelter or migration; similarly robots perform goal-directed navigation to find a charging station, get out of the rain or guide a person to a destination. This similarity in tasks extends to the environment as well; increasingly, mobile robots are operating in the same underwater, ground and aerial environments that animals do. Yet despite these similarities, goal-directed navigation research in robotics and biology has proceeded largely in parallel, linked only by a small amount of interdisciplinary research spanning both areas. Most state-of-the-art robotic navigation systems employ a range of sensors, world representations and navigation algorithms that seem far removed from what we know of how animals navigate; their navigation systems are shaped by key principles of navigation in ‘real-world’ environments including dealing with uncertainty in sensing, landmark observation and world modelling. By contrast, biomimetic animal navigation models produce plausible animal navigation behaviour in a range of laboratory experimental navigation paradigms, typically without addressing many of these robotic navigation principles. In this paper, we attempt to link robotics and biology by reviewing the current state of the art in conventional and biomimetic goal-directed navigation models, focusing on the key principles of goal-oriented robotic navigation and the extent to which these principles have been adapted by biomimetic navigation models and why.
Resumo:
A framework supporting the systematic development of safety cases for Unmanned Aircraft System (UAS) operations in a broad range of civil and commercial applications is presented. The case study application is the use of UAS for disaster response. In those States where regulations do not preclude UAS operations altogether, approvals for UAS operations can be granted on a case-by-case basis contingent on the provision of a safety case acceptable to the relevant National Airworthiness Authority (NAA). A safety case for UAS operations must show how the risks associated with the hazards have been managed to an acceptable level. The foundational components necessary for structuring and assessing these safety cases have not yet been proposed. Barrier-bow-tie models are used in this paper to structure the safety case for the two primary hazards of 1) a ground impact, and 2) a Mid-Air Collision (MAC). The models establish the set of Risk Control Variables (RCVs) available to reduce the risk. For the ground-impact risk model, seven RCVs are identified which in combination govern the probability of an accident. Similarly, ten RCVs are identified within the MAC model. The effectiveness of the RCVs and how they can implemented in terms of processes, policies, devices, practices, or other actions for each of the case-study applications are discussed. The framework presented can provide for the more systematic and consistent regulation of UAS through a "safety target" approach.
Resumo:
Designed for undergraduate and postgraduate students, academic researchers and industrial practitioners, this book provides comprehensive case studies on numerical computing of industrial processes and step-by-step procedures for conducting industrial computing. It assumes minimal knowledge in numerical computing and computer programming, making it easy to read, understand and follow. Topics discussed include fundamentals of industrial computing, finite difference methods, the Wavelet-Collocation Method, the Wavelet-Galerkin Method, High Resolution Methods, and comparative studies of various methods. These are discussed using examples of carefully selected models from real processes of industrial significance. The step-by-step procedures in all these case studies can be easily applied to other industrial processes without a need for major changes and thus provide readers with useful frameworks for the applications of engineering computing in fundamental research problems and practical development scenarios.
Resumo:
Impaired driver alertness increases the likelihood of drivers’ making mistakes and reacting too late to unexpected events while driving. This is particularly a concern on monotonous roads, where a driver’s attention can decrease rapidly. While effective countermeasures do not currently exist, the development of in-vehicle sensors opens avenues for monitoring driving behavior in real-time. The aim of this study is to predict drivers’ level of alertness through surrogate measures collected from in-vehicle sensors. Electroencephalographic activity is used as a reference to evaluate alertness. Based on a sample of 25 drivers, data was collected in a driving simulator instrumented with an eye tracking system, a heart rate monitor and an electrodermal activity device. Various classification models were tested from linear regressions to Bayesians and data mining techniques. Results indicated that Neural Networks were the most efficient model in detecting lapses in alertness. Findings also show that reduced alertness can be predicted up to 5 minutes in advance with 90% accuracy, using surrogate measures such as time to line crossing, blink frequency and skin conductance level. Such a method could be used to warn drivers of their alertness level through the development of an in-vehicle device monitoring, in real-time, drivers' behavior on highways.
Resumo:
Gaining invariance to camera and illumination variations has been a well investigated topic in Active Appearance Model (AAM) fitting literature. The major problem lies in the inability of the appearance parameters of the AAM to generalize to unseen conditions. An attractive approach for gaining invariance is to fit an AAM to a multiple filter response (e.g. Gabor) representation of the input image. Naively applying this concept with a traditional AAM is computationally prohibitive, especially as the number of filter responses increase. In this paper, we present a computationally efficient AAM fitting algorithm based on the Lucas-Kanade (LK) algorithm posed in the Fourier domain that affords invariance to both expression and illumination. We refer to this as a Fourier AAM (FAAM), and show that this method gives substantial improvement in person specific AAM fitting performance over traditional AAM fitting methods.
Resumo:
The functions of the volunteer functions inventory were combined with the constructs of the theory of planned behaviour (i.e., attitudes, subjective norms, and perceived behavioural control) to establish whether a stronger, single explanatory model prevailed. Undertaken in the context of episodic, skilled volunteering by individuals who were retired or approaching retirement (N = 186), the research advances on prior studies which either examined the predictive capacity of each model independently or compared their explanatory value. Using hierarchical regression analysis, the functions of the volunteer functions inventory (when controlling for demographic variables) explained an additional 7.0% of variability in individuals’ willingness to volunteer over and above that accounted for by the theory of planned behaviour. Significant predictors in the final model included attitudes, subjective norms and perceived behavioural control from the theory of planned behaviour and the understanding function from the volunteer functions inventory. It is proposed that the items comprising the understanding function may represent a deeper psychological construct (e.g., self-actualisation) not accounted for by the theory of planned behaviour. The findings highlight the potential benefit of combining these two prominent models in terms of improving understanding of volunteerism and providing a single parsimonious model for raising rates of this important behaviour.
Resumo:
Rodent (mouse and rat) models have been crucial in developing our understanding of human neurogenesis and neural stem cell (NSC) biology. The study of neurogenesis in rodents has allowed us to begin to understand adult human neurogenesis and in particular, protocols established for isolation and in vitro propagation of rodent NSCs have successfully been applied to the expansion of human NSCs. Furthermore, rodent models have played a central role in studying NSC function in vivo and in the development of NSC transplantation strategies for cell therapy applications. Rodents and humans share many similarities in the process of neurogenesis and NSC biology however distinct species differences are important considerations for the development of more efficient human NSC therapeutic applications. Here we review the important contributions rodent studies have had to our understanding of human neurogenesis and to the development of in vitro and in vivo NSC research. Species differences will be discussed to identify key areas in need of further development for human NSC therapy applications.