905 resultados para Web Mining, Data Mining, User Topic Model, Web User Profiles


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Comunicación presentada en las XVI Jornadas de Ingeniería del Software y Bases de Datos, JISBD 2011, A Coruña, 5-7 septiembre 2011.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper proposes a novel application of fuzzy logic to web data mining for two basic problems of a website: popularity and satisfaction. Popularity means that people will visit the website while satisfaction refers to the usefulness of the site. We will illustrate that the popularity of a website is a fuzzy logic problem. It is an important characteristic of a website in order to survive in Internet commerce. The satisfaction of a website is also a fuzzy logic problem that represents the degree of success in the application of information technology to the business. We propose a framework of fuzzy logic for the representation of these two problems based on web data mining techniques to fuzzify the attributes of a website.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present CORDER (COmmunity Relation Discovery by named Entity Recognition) an un-supervised machine learning algorithm that exploits named entity recognition and co-occurrence data to associate individuals in an organization with their expertise and associates. We discuss the problems associated with evaluating unsupervised learners and report our initial evaluation experiments.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

O aumento de tecnologias disponíveis na Web favoreceu o aparecimento de diversas formas de informação, recursos e serviços. Este aumento aliado à constante necessidade de formação e evolução das pessoas, quer a nível pessoal como profissional, incentivou o desenvolvimento área de sistemas de hipermédia adaptativa educacional - SHAE. Estes sistemas têm a capacidade de adaptar o ensino consoante o modelo do aluno, características pessoais, necessidades, entre outros aspetos. Os SHAE permitiram introduzir mudanças relativamente à forma de ensino, passando do ensino tradicional que se restringia apenas ao uso de livros escolares até à utilização de ferramentas informáticas que através do acesso à internet disponibilizam material didático, privilegiando o ensino individualizado. Os SHAE geram grande volume de dados, informação contida no modelo do aluno e todos os dados relativos ao processo de aprendizagem de cada aluno. Facilmente estes dados são ignorados e não se procede a uma análise cuidada que permita melhorar o conhecimento do comportamento dos alunos durante o processo de ensino, alterando a forma de aprendizagem de acordo com o aluno e favorecendo a melhoria dos resultados obtidos. O objetivo deste trabalho foi selecionar e aplicar algumas técnicas de Data Mining a um SHAE, PCMAT - Mathematics Collaborative Educational System. A aplicação destas técnicas deram origem a modelos de dados que transformaram os dados em informações úteis e compreensíveis, essenciais para a geração de novos perfis de alunos, padrões de comportamento de alunos, regras de adaptação e pedagógicas. Neste trabalho foram criados alguns modelos de dados recorrendo à técnica de Data Mining de classificação, abordando diferentes algoritmos. Os resultados obtidos permitirão definir novas regras de adaptação e padrões de comportamento dos alunos, poderá melhorar o processo de aprendizagem disponível num SHAE.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Semantic Web Mining aims at combining the two fast-developing research areas Semantic Web and Web Mining. The idea is to improve, on the one hand, the results of Web Mining by exploiting the new semantic structures in the Web; and to make use of Web Mining, on overview of where the two areas meet today, and sketches ways of how a closer integration could be profitable.

Relevância:

90.00% 90.00%

Publicador:

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Semantic Web Mining aims at combining the two fast-developing research areas Semantic Web and Web Mining. This survey analyzes the convergence of trends from both areas: Growing numbers of researchers work on improving the results of Web Mining by exploiting semantic structures in the Web, and they use Web Mining techniques for building the Semantic Web. Last but not least, these techniques can be used for mining the Semantic Web itself. The second aim of this paper is to use these concepts to circumscribe what Web space is, what it represents and how it can be represented and analyzed. This is used to sketch the role that Semantic Web Mining and the software agents and human agents involved in it can play in the evolution of Web space.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This class introduces basics of web mining and information retrieval including, for example, an introduction to the Vector Space Model and Text Mining. Guest Lecturer: Dr. Michael Granitzer Optional: Modeling the Internet and the Web: Probabilistic Methods and Algorithms, Pierre Baldi, Paolo Frasconi, Padhraic Smyth, Wiley, 2003 (Chapter 4, Text Analysis)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

As part of a large European coastal operational oceanography project (ECOOP), we have developed a web portal for the display and comparison of model and in situ marine data. The distributed model and in situ datasets are accessed via an Open Geospatial Consortium Web Map Service (WMS) and Web Feature Service (WFS) respectively. These services were developed independently and readily integrated for the purposes of the ECOOP project, illustrating the ease of interoperability resulting from adherence to international standards. The key feature of the portal is the ability to display co-plotted timeseries of the in situ and model data and the quantification of misfits between the two. By using standards-based web technology we allow the user to quickly and easily explore over twenty model data feeds and compare these with dozens of in situ data feeds without being concerned with the low level details of differing file formats or the physical location of the data. Scientific and operational benefits to this work include model validation, quality control of observations, data assimilation and decision support in near real time. In these areas it is essential to be able to bring different data streams together from often disparate locations.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We perform a review of Web Mining techniques and we describe a Bootstrap Statistics methodology applied to pattern model classifier optimization and verification for Supervised Learning for Tour-Guide Robot knowledge repository management. It is virtually impossible to test thoroughly Web Page Classifiers and many other Internet Applications with pure empirical data, due to the need for human intervention to generate training sets and test sets. We propose using the computer-based Bootstrap paradigm to design a test environment where they are checked with better reliability.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

There has been an increased demand for characterizing user access patterns using web mining techniques since the informative knowledge extracted from web server log files can not only offer benefits for web site structure improvement but also for better understanding of user navigational behavior. In this paper, we present a web usage mining method, which utilize web user usage and page linkage information to capture user access pattern based on Probabilistic Latent Semantic Analysis (PLSA) model. A specific probabilistic model analysis algorithm, EM algorithm, is applied to the integrated usage data to infer the latent semantic factors as well as generate user session clusters for revealing user access patterns. Experiments have been conducted on real world data set to validate the effectiveness of the proposed approach. The results have shown that the presented method is capable of characterizing the latent semantic factors and generating user profile in terms of weighted page vectors, which may reflect the common access interest exhibited by users among same session cluster.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Web transaction data between Web visitors and Web functionalities usually convey user task-oriented behavior pattern. Mining such type of click-stream data will lead to capture usage pattern information. Nowadays Web usage mining technique has become one of most widely used methods for Web recommendation, which customizes Web content to user-preferred style. Traditional techniques of Web usage mining, such as Web user session or Web page clustering, association rule and frequent navigational path mining can only discover usage pattern explicitly. They, however, cannot reveal the underlying navigational activities and identify the latent relationships that are associated with the patterns among Web users as well as Web pages. In this work, we propose a Web recommendation framework incorporating Web usage mining technique based on Probabilistic Latent Semantic Analysis (PLSA) model. The main advantages of this method are, not only to discover usage-based access pattern, but also to reveal the underlying latent factor as well. With the discovered user access pattern, we then present user more interested content via collaborative recommendation. To validate the effectiveness of proposed approach, we conduct experiments on real world datasets and make comparisons with some existing traditional techniques. The preliminary experimental results demonstrate the usability of the proposed approach.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Categorising visitors based on their interaction with a website is a key problem in Web content usage. The clickstreams generated by various users often follow distinct patterns, the knowledge of which may help in providing customised content. This paper proposes an approach to clustering weblog data, based on ART2 neural networks. Due to the characteristics of the ART2 neural network model, the proposed approach can be used for unsupervised and self-learning data mining, which makes it adaptable to dynamically changing websites.