979 resultados para Time-resolved methods
Resumo:
The goal of this work is the efficient solution of the heat equation with Dirichlet or Neumann boundary conditions using the Boundary Elements Method (BEM). Efficiently solving the heat equation is useful, as it is a simple model problem for other types of parabolic problems. In complicated spatial domains as often found in engineering, BEM can be beneficial since only the boundary of the domain has to be discretised. This makes BEM easier than domain methods such as finite elements and finite differences, conventionally combined with time-stepping schemes to solve this problem. The contribution of this work is to further decrease the complexity of solving the heat equation, leading both to speed gains (in CPU time) as well as requiring smaller amounts of memory to solve the same problem. To do this we will combine the complexity gains of boundary reduction by integral equation formulations with a discretisation using wavelet bases. This reduces the total work to O(h
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
A hybrid magnetic instrumentation to detect a magnetic field from a permanent magnet, and to detect magnetic markers and tracers using alternating current biosusceptometry (ACB) is discussed. The instrument was used to in vitro evaluation of the esophageal transit time. The sensitivity between both magnetic methods was compared, showing sensitivity for in vivo applications. © 2013 Springer-Verlag.
Resumo:
Brazil is the largest sugarcane producer in the world and has a privileged position to attend to national and international market places. To maintain the high production of sugarcane, it is fundamental to improve the forecasting models of crop seasons through the use of alternative technologies, such as remote sensing. Thus, the main purpose of this article is to assess the results of two different statistical forecasting methods applied to an agroclimatic index (the water requirement satisfaction index; WRSI) and the sugarcane spectral response (normalized difference vegetation index; NDVI) registered on National Oceanic and Atmospheric Administration Advanced Very High Resolution Radiometer (NOAA-AVHRR) satellite images. We also evaluated the cross-correlation between these two indexes. According to the results obtained, there are meaningful correlations between NDVI and WRSI with time lags. Additionally, the adjusted model for NDVI presented more accurate results than the forecasting models for WRSI. Finally, the analyses indicate that NDVI is more predictable due to its seasonality and the WRSI values are more variable making it difficult to forecast.
Resumo:
The subject of this Ph.D. research thesis is the development and application of multiplexed analytical methods based on bioluminescent whole-cell biosensors. One of the main goals of analytical chemistry is multianalyte testing in which two or more analytes are measured simultaneously in a single assay. The advantages of multianalyte testing are work simplification, high throughput, and reduction in the overall cost per test. The availability of multiplexed portable analytical systems is of particular interest for on-field analysis of clinical, environmental or food samples as well as for the drug discovery process. To allow highly sensitive and selective analysis, these devices should combine biospecific molecular recognition with ultrasensitive detection systems. To address the current need for rapid, highly sensitive and inexpensive devices for obtaining more data from each sample,genetically engineered whole-cell biosensors as biospecific recognition element were combined with ultrasensitive bioluminescence detection techniques. Genetically engineered cell-based sensing systems were obtained by introducing into bacterial, yeast or mammalian cells a vector expressing a reporter protein whose expression is controlled by regulatory proteins and promoter sequences. The regulatory protein is able to recognize the presence of the analyte (e.g., compounds with hormone-like activity, heavy metals…) and to consequently activate the expression of the reporter protein that can be readily measured and directly related to the analyte bioavailable concentration in the sample. Bioluminescence represents the ideal detection principle for miniaturized analytical devices and multiplexed assays thanks to high detectability in small sample volumes allowing an accurate signal localization and quantification. In the first chapter of this dissertation is discussed the obtainment of improved bioluminescent proteins emitting at different wavelenghts, in term of increased thermostability, enhanced emission decay kinetic and spectral resolution. The second chapter is mainly focused on the use of these proteins in the development of whole-cell based assay with improved analytical performance. In particular since the main drawback of whole-cell biosensors is the high variability of their analyte specific response mainly caused by variations in cell viability due to aspecific effects of the sample’s matrix, an additional bioluminescent reporter has been introduced to correct the analytical response thus increasing the robustness of the bioassays. The feasibility of using a combination of two or more bioluminescent proteins for obtaining biosensors with internal signal correction or for the simultaneous detection of multiple analytes has been demonstrated by developing a dual reporter yeast based biosensor for androgenic activity measurement and a triple reporter mammalian cell-based biosensor for the simultaneous monitoring of two CYP450 enzymes activation, involved in cholesterol degradation, with the use of two spectrally resolved intracellular luciferases and a secreted luciferase as a control for cells viability. In the third chapter is presented the development of a portable multianalyte detection system. In order to develop a portable system that can be used also outside the laboratory environment even by non skilled personnel, cells have been immobilized into a new biocompatible and transparent polymeric matrix within a modified clear bottom black 384 -well microtiter plate to obtain a bioluminescent cell array. The cell array was placed in contact with a portable charge-coupled device (CCD) light sensor able to localize and quantify the luminescent signal produced by different bioluminescent whole-cell biosensors. This multiplexed biosensing platform containing whole-cell biosensors was successfully used to measure the overall toxicity of a given sample as well as to obtain dose response curves for heavy metals and to detect hormonal activity in clinical samples (PCT/IB2010/050625: “Portable device based on immobilized cells for the detection of analytes.” Michelini E, Roda A, Dolci LS, Mezzanotte L, Cevenini L , 2010). At the end of the dissertation some future development steps are also discussed in order to develop a point of care (POCT) device that combine portability, minimum sample pre-treatment and highly sensitive multiplexed assays in a short assay time. In this POCT perspective, field-flow fractionation (FFF) techniques, in particular gravitational variant (GrFFF) that exploit the earth gravitational field to structure the separation, have been investigated for cells fractionation, characterization and isolation. Thanks to the simplicity of its equipment, amenable to miniaturization, the GrFFF techniques appears to be particularly suited for its implementation in POCT devices and may be used as pre-analytical integrated module to be applied directly to drive target analytes of raw samples to the modules where biospecifc recognition reactions based on ultrasensitive bioluminescence detection occurs, providing an increase in overall analytical output.
Resumo:
Among the experimental methods commonly used to define the behaviour of a full scale system, dynamic tests are the most complete and efficient procedures. A dynamic test is an experimental process, which would define a set of characteristic parameters of the dynamic behaviour of the system, such as natural frequencies of the structure, mode shapes and the corresponding modal damping values associated. An assessment of these modal characteristics can be used both to verify the theoretical assumptions of the project, to monitor the performance of the structural system during its operational use. The thesis is structured in the following chapters: The first introductive chapter recalls some basic notions of dynamics of structure, focusing the discussion on the problem of systems with multiply degrees of freedom (MDOF), which can represent a generic real system under study, when it is excited with harmonic force or in free vibration. The second chapter is entirely centred on to the problem of dynamic identification process of a structure, if it is subjected to an experimental test in forced vibrations. It first describes the construction of FRF through classical FFT of the recorded signal. A different method, also in the frequency domain, is subsequently introduced; it allows accurately to compute the FRF using the geometric characteristics of the ellipse that represents the direct input-output comparison. The two methods are compared and then the attention is focused on some advantages of the proposed methodology. The third chapter focuses on the study of real structures when they are subjected to experimental test, where the force is not known, like in an ambient or impact test. In this analysis we decided to use the CWT, which allows a simultaneous investigation in the time and frequency domain of a generic signal x(t). The CWT is first introduced to process free oscillations, with excellent results both in terms of frequencies, dampings and vibration modes. The application in the case of ambient vibrations defines accurate modal parameters of the system, although on the damping some important observations should be made. The fourth chapter is still on the problem of post processing data acquired after a vibration test, but this time through the application of discrete wavelet transform (DWT). In the first part the results obtained by the DWT are compared with those obtained by the application of CWT. Particular attention is given to the use of DWT as a tool for filtering the recorded signal, in fact in case of ambient vibrations the signals are often affected by the presence of a significant level of noise. The fifth chapter focuses on another important aspect of the identification process: the model updating. In this chapter, starting from the modal parameters obtained from some environmental vibration tests, performed by the University of Porto in 2008 and the University of Sheffild on the Humber Bridge in England, a FE model of the bridge is defined, in order to define what type of model is able to capture more accurately the real dynamic behaviour of the bridge. The sixth chapter outlines the necessary conclusions of the presented research. They concern the application of a method in the frequency domain in order to evaluate the modal parameters of a structure and its advantages, the advantages in applying a procedure based on the use of wavelet transforms in the process of identification in tests with unknown input and finally the problem of 3D modeling of systems with many degrees of freedom and with different types of uncertainty.
Resumo:
The thesis is concerned with local trigonometric regression methods. The aim was to develop a method for extraction of cyclical components in time series. The main results of the thesis are the following. First, a generalization of the filter proposed by Christiano and Fitzgerald is furnished for the smoothing of ARIMA(p,d,q) process. Second, a local trigonometric filter is built, with its statistical properties. Third, they are discussed the convergence properties of trigonometric estimators, and the problem of choosing the order of the model. A large scale simulation experiment has been designed in order to assess the performance of the proposed models and methods. The results show that local trigonometric regression may be a useful tool for periodic time series analysis.
Resumo:
OBJECTIVE: Acute mountain sickness is a frequent and debilitating complication of high-altitude exposure, but there is little information on the prevalence and time course of acute mountain sickness in children and adolescents after rapid ascent by mechanical transportation to 3500 m, an altitude at which major tourist destinations are located throughout the world. METHODS: We performed serial assessments of acute mountain sickness (Lake Louise scores) in 48 healthy nonacclimatized children and adolescents (mean +/- SD age: 13.7 +/- 0.3 years; 20 girls and 28 boys), with no previous high-altitude experience, 6, 18, and 42 hours after arrival at the Jungfraujoch high-altitude research station (3450 m), which was reached through a 2.5-hour train ascent. RESULTS: We found that the overall prevalence of acute mountain sickness during the first 3 days at high altitude was 37.5%. Rates were similar for the 2 genders and decreased progressively during the stay (25% at 6 hours, 21% at 18 hours, and 8% at 42 hours). None of the subjects needed to be evacuated to lower altitude. Five subjects needed symptomatic treatment and responded well. CONCLUSION: After rapid ascent to high altitude, the prevalence of acute mountain sickness in children and adolescents was relatively low; the clinical manifestations were benign and resolved rapidly. These findings suggest that, for the majority of healthy nonacclimatized children and adolescents, travel to 3500 m is safe and pharmacologic prophylaxis for acute mountain sickness is not needed.