975 resultados para Ternary layers


Relevância:

20.00% 20.00%

Publicador:

Resumo:

"UILU-ENG 80 1719"--Cover.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A preliminary survey of the plutonium rich corners of the Pu-Al-Ga, Pu-Zn-Ga and Pu-Ce-Ga systems was made. Emphasis was placed on the determination of how well the delta phase of plutonium was stabilized by these alloy additions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

"Materials Laboratory, Contract No. AF33(616)-5771, Project No. 7021."

Relevância:

20.00% 20.00%

Publicador:

Resumo:

"Materials Laboratory, Contract no. AF 33(616)-5426, Project no. 7360."

Relevância:

20.00% 20.00%

Publicador:

Resumo:

"Materials Laboratory, Contract no. AF 33(616)-5678, Project no. 7351."

Relevância:

20.00% 20.00%

Publicador:

Resumo:

"This report is based on research sponsored by the U.S. Navy through the Office of Naval Research, Contract Nonr-2653(00)"

Relevância:

20.00% 20.00%

Publicador:

Resumo:

"Issued May 1979."

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Phase evolution during the mechanical alloying of Mo and Si elemental powders with a ternary addition of Al, Mg, Ti or Zr was monitored using X-ray diffraction. Rietveld analysis was used to quantify the phase proportions. When Mo and Si are mechanically alloyed in the absence of a ternary element, the tetragonal C11b polymorph of MoSi2 (t-MoSi2) forms by a self-propagating combustion reaction. With additional milling, the tetragonal phase transforms to the hexagonal C40 structure (h-MoSi2). The mechanical alloying of Al, Mg and Ti additions with Mo and Si tend to promote a more rapid transformation of t-MoSi2 to h-MoSi2. In high concentrations, the addition of these ternary elements inhibits the initial combustion reaction, instead promoting the direct formation of h-MoSi2. The addition of Zr tends to stabilise the tetragonal phase.