957 resultados para Syndecan-1 Expression


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Islet-brain 1 (IB1) is the human and rat homologue of JIP-1, a scaffold protein interacting with the c-Jun amino-terminal kinase (JNK). IB1 expression is mostly restricted to the endocrine pancreas and to the central nervous system. Herein, we explored the transcriptional mechanism responsible for this preferential islet and neuronal expression of IB1. A 731-bp fragment of the 5' regulatory region of the human MAPK8IP1 gene was isolated from a human BAC library and cloned upstream of a luciferase reporter gene. This construct drove high transcriptional activity in both insulin-secreting and neuron-like cells but not in unrelated cell lines. Sequence analysis of this promoter region revealed the presence of a neuron-restrictive silencer element (NRSE) known to bind repressor zinc finger protein REST. This factor is not expressed in insulin-secreting and neuron-like cells. By mobility shift assay, we confirmed that REST binds to the NRSE present in the IB1 promoter. Once transiently transfected in beta-cell lines, the expression vector encoding REST repressed IB1 transcriptional activity. The introduction of a mutated NRSE in the 5' regulating region of the IB1 gene abolished the repression activity driven by REST in insulin-secreting beta cells and relieved the low transcriptional activity of IB1 observed in unrelated cells. Moreover, transfection in non-beta and nonneuronal cell lines of an expression vector encoding REST lacking its transcriptional repression domain relieved IB1 promoter activity. Last, the REST-mediated repression of IB1 could be abolished by trichostatin A, indicating that deacetylase activity is required to allow REST repression. Taken together, these data establish a critical role for REST in the control of the tissue-specific expression of the human IB1 gene.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

It is well established that Notch signaling plays a critical role at multiple stages of T cell development and activation. However, detailed analysis of the cellular and molecular events associated with Notch signaling in T cells is hampered by the lack of reagents that can unambiguously measure cell surface Notch receptor expression. Using novel rat mAbs directed against the extracellular domains of Notch1 and Notch2, we find that Notch1 is already highly expressed on common lymphoid precursors in the bone marrow and remains at high levels during intrathymic maturation of CD4(-)CD8(-) thymocytes. Notch1 is progressively down-regulated at the CD4(+)CD8(+) and mature CD4(+) or CD8(+) thymic stages and is expressed at low levels on peripheral T cells. Immunofluorescence staining of thymus cryosections further revealed a localization of Notch1(+)CD25(-) cells adjacent to the thymus capsule. Notch1 was up-regulated on peripheral T cells following activation in vitro with anti-CD3 mAbs or infection in vivo with lymphocytic chorio-meningitis virus or Leishmania major. In contrast to Notch1, Notch2 was expressed at intermediate levels on common lymphoid precursors and CD117(+) early intrathymic subsets, but disappeared completely at subsequent stages of T cell development. However, transient up-regulation of Notch2 was also observed on peripheral T cells following anti-CD3 stimulation. Collectively our novel mAbs reveal a dynamic regulation of Notch1 and Notch2 surface expression during T cell development and activation. Furthermore they provide an important resource for future analysis of Notch receptors in various tissues including the hematopoietic system.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The purpose of this study was to examine the relationship between skeletal muscle monocarboxylate transporters 1 and 4 (MCT1 and MCT4) expression, skeletal muscle oxidative capacity and endurance performance in trained cyclists. Ten well-trained cyclists (mean +/- SD; age 24.4 +/- 2.8 years, body mass 73.2 +/- 8.3 kg, VO(2max) 58 +/- 7 ml kg(-1) min(-1)) completed three endurance performance tasks [incremental exercise test to exhaustion, 2 and 10 min time trial (TT)]. In addition, a muscle biopsy sample from the vastus lateralis muscle was analysed for MCT1 and MCT4 expression levels together with the activity of citrate synthase (CS) and 3-hydroxyacyl-CoA dehydrogenase (HAD). There was a tendency for VO(2max) and peak power output obtained in the incremental exercise test to be correlated with MCT1 (r = -0.71 to -0.74; P < 0.06), but not MCT4. The average power output (P (average)) in the 2 min TT was significantly correlated with MCT4 (r = -0.74; P < 0.05) and HAD (r = -0.92; P < 0.01). The P (average) in the 10 min TT was only correlated with CS activity (r = 0.68; P < 0.05). These results indicate the relationship between MCT1 and MCT4 as well as cycle TT performance may be influenced by the length and intensity of the task.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Background: The human chromosome 8p23.1 region contains a 3.8–4.5 Mb segment which can be found in different orientations (defined as genomic inversion) among individuals. The identification of single nucleotide polymorphisms (SNPs) tightly linked to the genomic orientation of a given region should be useful to indirectly evaluate the genotypes of large genomic orientations in the individuals. Results: We have identified 16 SNPs, which are in linkage disequilibrium (LD) with the 8p23.1 inversion as detected by fluorescent in situ hybridization (FISH). The variability of the 8p23.1 orientation in 150 HapMap samples was predicted using this set of SNPs and was verified by FISH in a subset of samples. Four genes (NEIL2, MSRA, CTSB and BLK) were found differentially expressed (p<0.0005) according to the orientation of the 8p23.1 region. Finally, we have found variable levels of mosaicism for the orientation of the 8p23.1 as determined by FISH. Conclusion: By means of dense SNP genotyping of the region, haplotype-based computational analyses and FISH experiments we could infer and verify the orientation status of alleles in the 8p23.1 region by detecting two short haplotype stretches at both ends of the inverted region, which are likely the relic of the chromosome in which the original inversion occurred. Moreover, an impact of 8p23.1 inversion on gene expression levels cannot be ruled out, since four genes from this region have statistically significant different expression levels depending on the inversion status. FISH results in lymphoblastoid cell lines suggest the presence of mosaicism regarding the 8p23.1 inversion.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

BACKGROUND AND PROCEDURE: To determine the possible role of Fas/FasL system in the particularly heterogeneous behaviour of neuroblastoma (NB), we have measured the functional expression of Fas and its ligand, FasL, in primary neuroblastoma samples and cell lines by immunohistochemistry and flow cytometry. RESULTS: Our results reveal that while Fas expression is associated with low stage and more mature tumors, heterogeneous FasL expression was mostly detected in high stage tumors, with our apparent correlation to MYCN amplification. Flow cytometric analysis of cell lines demonstrated a high expression of Fas in epithelial-type, HLA class I positive cell lines, which was lost upon activation with phorbol esters. In contrast, Fas ligand was detected in only a small subset of cell lines. CONCLUSIONS: In some cell lines, cytotoxic assays revealed the ability of NB-associated Fas receptor to transduce an apoptotic signal upon triggering. The pattern of functional Fas/FasL expression in tumours and cell lines suggests that this system may be involved in the evasion of highly malignant neuroblastoma cells to host immune response.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Objective. To study the impact of the neutral endopeptidase (NEP)/neuropeptides (NPs) axis and nuclear factor kappa B (NFκB) as predictors of prostate-specific antigen (PSA) recurrence after radical prostatectomy (RP). Patients and Methods. 70 patients with early-stage PC were treated with RP and their tumor samples were evaluated for expression of NEP, endothelin-1 (ET-1) and NFκB (p65). Time to PSA recurrence was correlated with the examined parameters and combined with preoperative PSA level, Gleason score, pathological TNM (pT) stage, and surgical margin (SM) assessment. Results and Limitations. Membranous expression of NEP (P < 0.001), cytoplasmic ET-1 (P = 0.002), and cytoplasmic NFκB (P < 0.001) were correlated with time to PSA relapse. NEP was associated with ET-1 (P < 0.001) and NFκB (P < 0.001). ET-1 was also correlated with NFκB (P < 0.001). NEP expression (P = 0.017), pT stage (P = 0.013), and SMs (P = 0.036) were independent predictors of time to PSA recurrence. Conclusions. There seems to be a clinical model of NEP/NPs and NFκB pathways interconnection, with their constituents following inverse patterns of expression in accordance with their biological roles and molecular interrelations.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Cancer stem cells (CSCs) display plasticity and self-renewal properties reminiscent of normal tissue stem cells, but the events responsible for their emergence remain obscure. We recently identified CSCs in Ewing sarcoma family tumors (ESFTs) and showed that they retain mesenchymal stem cell (MSC) plasticity. In the present study, we addressed the mechanisms that underlie ESFT CSC development. We show that the EWS-FLI-1 fusion gene, associated with 85%-90% of ESFTs and believed to initiate their pathogenesis, induces expression of the embryonic stem cell (ESC) genes OCT4, SOX2, and NANOG in human pediatric MSCs (hpMSCs) but not in their adult counterparts. Moreover, under appropriate culture conditions, hpMSCs expressing EWS-FLI-1 generate a cell subpopulation displaying ESFT CSC features in vitro. We further demonstrate that induction of the ESFT CSC phenotype is the result of the combined effect of EWS-FLI-1 on its target gene expression and repression of microRNA-145 (miRNA145) promoter activity. Finally, we provide evidence that EWS-FLI-1 and miRNA-145 function in a mutually repressive feedback loop and identify their common target gene, SOX2, in addition to miRNA145 itself, as key players in ESFT cell differentiation and tumorigenicity. Our observations provide insight for the first time into the mechanisms whereby a single oncogene can reprogram primary cells to display a CSC phenotype.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

OBJECTIVE: To determine the long-term effect of natalizumab (NTZ) treatment on the expression of integrins and chemokine receptors involved in the migration of T cells towards the central nervous system (CNS). METHODS: We drew the blood of 23 patients just before starting NTZ therapy and every 12 months thereafter, for up to 48 months of treatment. We assessed the ex-vivo expression of phenotype markers (CCR7 and CD45RA), CNS-addressing integrins (CD11a, CD49d and CD29) and chemokine receptors (CXCR3 and CCR6) in CD4+ or CD8+ T-cell subsets by flow cytometry. RESULTS: As compared to the pre-NTZ values, there was a marked increase in central memory (CCR7+/CD45RA-) CD4+ T cells and in effector memory (CCR7-/CD45RA-) CD8+ T cells at 12 and 24 months. In addition to an expected downregulation of both VLA-4 subunits (CD49d/CD29), we also found decreased T-cell expression of CXCR3 at 12 months, and of CD11a (LFA-1 αL subunit) at 12 months, but mostly at 24 months of NTZ treatment. CONCLUSION: Our data show a nadir of CD11a expression at 2 years of NTZ treatment, at the peak of incidence of progressive multifocal leukoencephalopathy (PML), indirectly suggesting that a lack of these molecules may play a role in the onset of PML in NTZ-treated patients.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Malignant melanoma accounts for most of the increasing mortality from skin cancer. Melanoma cells were found to express Fas (also called Apo-1 or CD95) ligand (FasL). In metastatic lesions, Fas-expressing T cell infiltrates were proximal to FasL+ tumor cells. In vitro, apoptosis of Fas-sensitive target cells occurred upon incubation with melanoma tumor cells; and in vivo, injection of FasL+ mouse melanoma cells in mice led to rapid tumor formation. In contrast, tumorigenesis was delayed in Fas-deficient lpr mutant mice in which immune effector cells cannot be killed by FasL. Thus, FasL may contribute to the immune privilege of tumors.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The biodistribution of transgene expression in the CNS after localized stereotaxic vector delivery is an important issue for the safety of gene therapy for neurological diseases. The cellular specificity of transgene expression from rAAV2/1 vectors (recombinant adeno-associated viral vectors pseudotyped with viral capsids from serotype 1) using the tetracycline-inducible (TetON) expression cassette in comparison with the cytomegalovirus (CMV) promoter was investigated in the rat nigrostriatal pathway. After intrastriatal injection, although green fluorescent protein (GFP) was expressed mainly in neurons with both vectors, the relative proportions of DARPP-32-positive projection neurons and parvalbumin-positive interneurons were, respectively, 13:1 and 2:1 for the CMV and TetON vectors. DARP32-positive neurons projecting to the globus pallidus were strongly GFP positive with both vectors, whereas those projecting to the substantia nigra pars reticulata (SNpr) were efficiently labeled by the CMV vector but poorly by the TetON vector. Numerous GFP-positive cells were evidenced in the subventricular zone with both vectors. However, in the olfactory bulb (OB), GFP-positive neurons were observed with the CMV vector but not the TetON vector. We conclude that the absence of significant amounts of transgene product in distant regions (SN and OB) constitutes a safety advantage of the AAV2/1-TetON vector for striatal gene therapy. Midbrain injections resulted in selective GFP expression in tyrosine hydroxylase-positive neurons by the TetON vector whereas with the CMV vector, GFP-positive cells covered a widespread area of the midbrain. The biodistribution of GFP protein corresponded to that of the transcripts and not of the viral genomes. We conclude that the rAAV2/1-TetON vector constitutes an interesting tool for specific transgene expression in midbrain dopaminergic neurons.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The molecular mechanisms regulating the initial uptake of inorganic sulfate in plants are still largely unknown. The current model for the regulation of sulfate uptake and assimilation attributes positive and negative regulatory roles to O-acetyl-serine (O-acetyl-Ser) and glutathione, respectively. This model seems to suffer from exceptions and it has not yet been clearly validated whether intracellular O-acetyl-Ser and glutathione levels have impacts on regulation. The transcript level of the two high-affinity sulfate transporters SULTR1.1 and SULTR1.2 responsible for sulfate uptake from the soil solution was compared to the intracellular contents of O-acetyl-Ser, glutathione, and sulfate in roots of plants submitted to a wide diversity of experimental conditions. SULTR1.1 and SULTR1.2 were differentially expressed and neither of the genes was regulated in accordance with the current model. The SULTR1.1 transcript level was mainly altered in response to the sulfur-related treatments. Split-root experiments show that the expression of SULTR1.1 is locally regulated in response to sulfate starvation. In contrast, accumulation of SULTR1.2 transcripts appeared to be mainly related to metabolic demand and is controlled by photoperiod. On the basis of the new molecular insights provided in this study, we suggest that the expression of the two transporters depends on different regulatory networks. We hypothesize that interplay between SULTR1.1 and SULTR1.2 transporters could be an important mechanism to regulate sulfate content in the roots

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Résumé du travail de thèse Introduction : Les différentes cellules endothéliales du lit vasculaire ont de nombreuses similitudes fonctionnelles et morphologiques. Cependant, elles présentent également une importante hétérogénéité structurelle et fonctionnelle qui peut avoir des implications notamment dans l'angiogenèse et le développement des maladies cardio-vasculaires. Peu d'études ont été publiées au sujet de l'expression et de la distribution des marqueurs endothéliaux dans les tissus humain normaux. Objectif : Nous avons étudié l'expression immunohistochimique des marqueurs endothéliaux CD31, CD34, vWF et Fli-1 dans les vaisseaux périphériques du rein, du poumon, de la rate, du foie, du cour et des gros vaisseaux ; incluant l'aorte, la veine cave inférieure, l'artère rénale ainsi que les artères et veines pulmonaires et fémorales. Matériel et méthodes : Les échantillons tissulaires ont été obtenus à partir de matériel d'autopsie et de biopsies. Le matériel a été fixé en formaline et inclus en paraffine. Les coupes de paraffine ont été colorées immunohistochimiquement avec CD31, CD34 et vWF. Les biopsies ont également été colorées immunohistochimiquement avec Fli-1, D2-40 et Lyve-1. Résultats : L'expression immunohistochimique de ces marqueurs est hétérogène dans les différents organes étudiés. Dans le rein, l'endothélium fenêtré des glomérules exprime fortement CD31 et CD34. Par contre, il n'exprime pas ou alors de manière faible et focale vWF. Dans le poumon, les capillaires alvéolaires expriment fortement CD31 et CD34 mais sont habituellement négatifs pour le vWF. L'expression de vWF augmente graduellement avec le calibre vasculaire dans le poumon. Les sinusoïdes de la rate expriment CD31 de manière diffuse mais ils n'expriment pas CD34. Les sinusoïdes du foie expriment CD31 de part et d'autre des lobules. Par contre, CD34 est exprimé seulement dans la région périportale. L'expression de Fli-1 dans les cellules endothéliales est ubiquitaire et ne varie pas suivant le type de vaisseau ou d'organe. Fli-1 est également exprimé dans d'autres types de cellules, essentiellement des lymphocytes. D2-40 est exprimé seulement dans l'endothélium des vaisseaux lymphatiques. L'expression de Lyve-1 dans ce matériel de routine était inconstante et non reproductible. Conclusion : Ces résultats indiquent que l'expression des marqueurs endothéliaux CD31, CD34 et vWF est hétérogène dans le lit vasculaire et qu'elle varie entre différents vaisseaux et différents compartiments anatomiques du même organe. D2-40 ne marque que les cellules endothéliales lymphatiques.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Résumé: Les environnements hémodynamiques, favorisant ou protégeant contre la formation de la plaque, induisent tout deux une augmentation de la production d'anion superoxide dans les cellules endothéliales (ECs). Par ailleurs, une régulation différente de l'expression des gènes a été décrite dans les cellules exposées à ces différentes conditions. Dans le but d'investiguer le rôle de l'augmentation du stress oxydatif dans l'expression des gènes régulée par le flux, nous avons d'abord exposé les EC à un flux unidirectionnel, non pulsé. Dans ces conditions, l'état oxydatif des cellules endothéliales est augmenté de façon transitoire. L'expression du gène de l'endothéline 1 (ET-1) est aussi induite de façon transitoire par un tel flux, alors que l'expression du gène de la nitiric oxyde synthase endothéliale (NOS III) est stimulé de façon durable. Au contraire, un flux unidirectionnel pulsé, qui induit une augmentation durable de la production d'anion superoxide, augmente aussi de façon durable l'expression des gènes de ET-1 comme de NOS III. Un flux oscillatoire (favorisant la plaque), qui lui aussi ,a des effets à long terme sur la production d'anion superoxide, a uniquement augmenté l'expression de ET-1. De plus, l'utilisation d'un antioxydant, a seulement partiellement inhibé la stimulation de l'expression du gène NOS III par le flux unidirectionnel pulsé, alors qu'il a complètement abrogé la stimulation de l'expression du gène ET-1 par le flux unidirectionnel pulsé et oscillatoire. Ceci suggère que les forces mécaniques régulent l'expression des gènes dans les EC par un double mécanisme dépendant et indépendant du stress oxidatif des cellules. Par ailleurs, ces résultats supportent ultérieurement l'hypothèse que la balance entre la réponse oxidative et anti-oxidante dans les cellules endothéliales exposées à un environnement hémodynamique est une des clés de la prédisposition à un dysfonctionnement endothélial observé dans des régions exposées à des flux perturbés. Abstract: Both plaque-free and plaque-prone hemodynamic environments induce an increase in the oxidative state of endothelial cells (ECs), whereas differential gene expression regulation was described in cells exposed to these conditions. In order to investigate the role of the increased oxidative state in flow-regulation of gene expression, we first exposed EC to non-pulsed unidirectional shear stress. These conditions only slightly increases ECs oxidative state and endothelin-1 (ET-1) mRNA expression, whereas endothelial nitric oxide synthase (NOS III) mRNA level were significantly up-regulated. On the contrary, both ET-1 and NOS III gene expression were significantly induced in EC exposed to pulsed-unidirectional flow (plaque-free). Only ET-1 gene expression was up-regulated by oscillatory flow (plaque-prone). Moreover, use of an antioxidant only partially inhibited NOS III gene up-regulation by unidirectional flow, whereas it completely abrogated ET-1 gene up-regulation by unidirectional and oscillatory flows. Thus suggesting that mechanical forces regulate gene expression in ECs both via oxidative stress-dependent and -independent mechanisms.