960 resultados para Strain Gradient Plasticity Theory
Resumo:
This work proposes a constitutive model to simulate nonlinear behaviour of cement based materials subjected to different loading paths. The model incorporates a multidirectional fixed smeared crack approach to simulate crack initiation and propagation, whereas the inelastic behaviour of material between cracks is treated by a numerical strategy that combines plasticity and damage theories. For capturing more realistically the shear stress transfer between the crack surfaces, a softening diagram is assumed for modelling the crack shear stress versus crack shear strain. The plastic damage model is based on the yield function, flow rule and evolution law for hardening variable, and includes an explicit isotropic damage law to simulate the stiffness degradation and the softening behaviour of cement based materials in compression. This model was implemented into the FEMIX computer program, and experimental tests at material scale were simulated to appraise the predictive performance of this constitutive model. The applicability of the model for simulating the behaviour of reinforced concrete shear wall panels submitted to biaxial loading conditions, and RC beams failing in shear is investigated.
Resumo:
The regular use of the computer in the office contributed to the appearance of many risk factors related with work-related musculoskeletal disorders (WRMSD) such as maintaining static sitting postures for long time and awkward postures of the head, neck and upper limbs, leading to increased muscle activity in the cervical spine and shoulders. The objective of this study was to evaluate the presence of risk factors for WRMSD in an office using the Rapid Assessment Office Strain method (ROSA). Based on the results of this ergonomic evaluation, an occupational gym program was designed and implemented. Thirty-eight workplaces were evaluated using the observation of the tasks and pictures records in order to characterize those tasks in more detail. The ROSA tool was applied by an observer, who selected the appropriate score based on the worker's posture as well as the time spent in each posture. Scores were recorded for the sections of the method, specifically Chair, Monitor and Mouse and Keyboard and Telephone. The scores were recorded in a sheet developed for the method. The mean ROSA final score was 3.61 ± 0.64, for Chair section was 3.45 ± 0.55, to Monitor and Telephone section was 3.11 ± 0.61, and to Mouse and Keyboard section was 2.11 ± 0.31. The results led to understand that the analyzed tasks represent situations of risk of discomfort and, according to the methods guidelines, further research and modifications of the workplace may be necessary. It should be emphasized that these scores may not be related to the poor available equipment but with the need to optimize their use by the workers. It was noticed also that the interaction of workers with the tasks and the adopted sitting posture at the computer throughout the day have effects at a muscular level, essentially for the cervical area and shoulders. ROSA tool is an useful and easy method to assess several risk factors associated with WRMSD, also allowing the design of specific occupational gym programs.
Resumo:
PhD thesis in Bioengineering
Resumo:
Shifting from chemical to biotechnological processes is one of the cornerstones of 21st century industry. The production of a great range of chemicals via biotechnological means is a key challenge on the way toward a bio-based economy. However, this shift is occurring at a pace slower than initially expected. The development of efficient cell factories that allow for competitive production yields is of paramount importance for this leap to happen. Constraint-based models of metabolism, together with in silico strain design algorithms, promise to reveal insights into the best genetic design strategies, a step further toward achieving that goal. In this work, a thorough analysis of the main in silico constraint-based strain design strategies and algorithms is presented, their application in real-world case studies is analyzed, and a path for the future is discussed.
Resumo:
Stress/strain sensors constitute a class of devices with a global ever-growing market thanks to their use in many fields of modern life. They are typically constituted by thin metal foils deposited on flexible supports. However, the low inherent resistivity and limited flexibility of their constituents make them inadequate for several applications, such as measuring large movements in robotic systems and biological tissues. As an alternative to the traditional compounds, in the present work we will show the advantages to employ a smart material, polyaniline (PANI), prepared by an innovative environmentally friendly route, for force/strain sensor applications wherein simple processing, environmental friendliness and sensitivity are particularly required.
Resumo:
We study the temperature dependent magnetic susceptibility of a strained graphene quantum dot by using the determinant quantum Monte Carlo method. Within the Hubbard model on a honeycomb lattice, our unbiased numerical results show that a relative small interaction $U$ may lead to a edge ferromagnetic like behavior in the strained graphene quantum dot, and a possible room temperature transition is suggested. Around half filling, the ferromagnetic fluctuations at the zigzag edge is strengthened both markedly by the on-site Coulomb interaction and the strain, especially in low temperature region. The resultant strongly enhanced ferromagnetic like behavior may be important for the development of many applications.
Resumo:
Objective. To evaluate the degree of axial elongation with soft radial refractive gradient (SRRG) contact lenses, orthokeratology (OK), and single vision (SV) spectacle lenses (control) during a period of 1 year before treatment and 2 years after treatment. Methods. This was a prospective, longitudinal, nonrandomized study. The study groups consisted of 30, 29, and 41 children, respectively. The axial length (AL) was measured during 2 years after recruitment and lens fitting. Results. The baseline refractive sphere was correlated significantly (r 2 = 0.542; P < 0.0001) with the amount of myopia progression before baseline. After 2 years, the mean myopia progression values for the SRRG, OK, and SV groups were −0.56 ± 0.51, −0.32 ± 0.53, and −0.98 ± 0.58 diopter, respectively. The results represent reductions in myopic progression of 43% and 67% for the SRRG and OK groups, respectively, compared to the SV group. The AL increased more in the SV group compared to the SRRG and OK groups, with 27% and 38% lower axial elongation, respectively, compared to the SV group at the 2-year visit (P < 0.05). SRRG and OK showed no differences (P = 0.430). Conclusion. The SRRG lens significantly decreased AL elongation compared to the SV control group. The SRRG lens was similarly effective to OK in preventing myopia progression in myopic children and adolescent.
Resumo:
A newly developed strain rate dependent anisotropic continuum model is proposed for impact and blast applications in masonry. The present model adopted the usual approach of considering different yield criteria in tension and compression. The analysis of unreinforced block work masonry walls subjected to impact is carried out to validate the capability of the model. Comparison of the numerical predictions and test data revealed good agreement. Next, a parametric study is conducted to evaluate the influence of the tensile strengths along the three orthogonal directions and of the wall thickness on the global behavior of masonry walls.
Resumo:
The present study proposes a dynamic constitutive material interface model that includes non-associated flow rule and high strain rate effects, implemented in the finite element code ABAQUS as a user subroutine. First, the model capability is validated with numerical simulations of unreinforced block work masonry walls subjected to low velocity impact. The results obtained are compared with field test data and good agreement is found. Subsequently, a comprehensive parametric analysis is accomplished with different joint tensile strengths and cohesion, and wall thickness to evaluate the effect of the parameter variations on the impact response of masonry walls.
Resumo:
Palms show clear niche segregation patterns along topographic gradients in tropical forests, with some species associated to terra firme and others to seasonally flooded areas. The aim of this study was to quantitatively describe the fine-scale spatial variation within a palm community, tracking the changes in species' abundance along environmental gradients associated with a perennial stream the eastern Amazon. The study of palm communities was based on 60 forest plots in which all adult palms were counted. We found a total of 566 palms in a community containing 11 species. Furthermore, we found a significant separation in the palm community between seasonally-flooded and terra firme forests. We found a gradient with various densities of the three most abundant palm species within the first 100 m away from the flooded area. Other species were located exclusively in the terra firme forest. The abundance of the six most common species were distributed in relation to humidity gradients from floodplains to terra firme, with palm distribution from the most flood-tolerant to the least flood-tolerant palm species as follows: Euterpe oleracea, Attalea phalerata and Socratea exorrhiza (species with floodplain affinity), Astrocaryum gynacanthum, Astrocaryum aculeatum, Attalea maripa (species with terra firme affinity)
Resumo:
The computation of the optical conductivity of strained and deformed graphene is discussed within the framework of quantum field theory in curved spaces. The analytical solutions of the Dirac equation in an arbitrary static background geometry for one dimensional periodic deformations are computed, together with the corresponding Dirac propagator. Analytical expressions are given for the optical conductivity of strained and deformed graphene associated with both intra and interbrand transitions. The special case of small deformations is discussed and the result compared to the prediction of the tight-binding model.
Resumo:
A modified version of the metallic-phase pseudofermion dynamical theory (PDT) of the 1D Hubbard model is introduced for the spin dynamical correlation functions of the half-filled 1D Hubbard model Mott– Hubbard phase. The Mott–Hubbard insulator phase PDT is applied to the study of the model longitudinal and transverse spin dynamical structure factors at finite magnetic field h, focusing in particular on the sin- gularities at excitation energies in the vicinity of the lower thresholds. The relation of our theoretical results to both condensed-matter and ultra-cold atom systems is discussed.
Resumo:
The success of synthetic bone implants requires good interface between the material and the host tissue. To study the biological relevance of fi bronectin (FN) density on the osteogenic commitment of human bone marrow mesenchymal stem cells (hBMMSCs), human FN was adsorbed in a linear density gradient on the surface of PCL. The evolution of the osteogenic markers alkaline phosphatase and collagen 1 alpha 1 was monitored by immunohistochemistry, and the cytoskeletal organization and the cell-derived FN were assessed. The functional analysis of the gradient revealed that the lower FN-density elicited stronger osteogenic expression and higher cytoskeleton spreading, hallmarks of the stem cell commitment to the osteoblastic lineage. The identifi cation of the optimal FN density regime for the osteogenic commitment of hBM-MSCs presents a simple and versatile strategy to signifi cantly enhance the surface properties of polycaprolactone as a paradigm for other synthetic polymers intended for bone-related applications.
Resumo:
The use of biomaterials to direct osteogenic differentiation of human mesenchymal stem cells (hMSCs) in the absence of osteogenic supplements is thought to be part of the next generation of orthopedic implants. We previously engineered surface-roughness gradients of average roughness (Ra) varying from the sub-micron to the micrometer range ( 0.5–4.7 lm), and mean distance between peaks (RSm) gradually varying from 214 lm to 33 lm. Here we have screened the ability of such surface-gradients of polycaprolactone to influence the expression of alkaline phosphatase (ALP), collagen type 1 (COL1) and mineralization by hMSCs cultured in dexamethasone (Dex)-deprived osteogenic induction medium (OIM) and in basal growth medium (BGM). Ra 1.53 lm/RSm 79 lm in Dex-deprived OI medium, and Ra 0.93 lm/RSm 135 lm in BGM consistently showed higher effectiveness at supporting the expression of the osteogenic markers ALP, COL1 and mineralization, compared to the tissue culture polystyrene (TCP) control in complete OIM. The superior effectiveness of specific surface-roughness revealed that this strategy may be used as a compelling alternative to soluble osteogenic inducers in orthopedic applications featuring the clinically relevant biodegradable polymer polycaprolactone.
Resumo:
We study the low frequency absorption cross section of spherically symmetric nonextremal d-dimensional black holes. In the presence of α′ corrections, this quantity must have an explicit dependence on the Hawking temperature of the form 1/TH. This property of the low frequency absorption cross section is shared by the D1-D5 system from type IIB superstring theory already at the classical level, without α′ corrections. We apply our formula to the simplest example, the classical d-dimensional Reissner-Nordstr¨om solution, checking that the obtained formula for the cross section has a smooth extremal limit. We also apply it for a d-dimensional Tangherlini-like solution with α′3 corrections.